ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract . Enroth-Cugell and Robson (1966) first proposed a classification of retinal ganglion cells into X cells, which exhibit approximate linear spatial summation and largely sustained responses, and Y cells, which exhibit nonlinearities and transient responses. Gaudiano (1992a, 1992b, 1994) has suggested that the dominant characteristics of both X and Y cells can be simulated with a single model simply by changing receptive field profiles to match those of the anatomical counterparts of X and Y cells. He also proposed that a significant component of the spatial nonlinearities observed in Y (and sometimes X) cells can result from photoreceptor nonlinearities coupled with push-pull bipolar connections. Specifically, an asymmetry was predicted in the ganglion cell response to rectangular gratings presented at different locations in the receptive field under two conditions: introduction/withdrawal (on-off) or contrast reversal. When measuring the response to these patterns as a function of spatial phase, the standard difference-of-Gaussians model predicts symmetrical responses about the receptive field center, while the push-pull model predicts slight but significant asymmetry in the on-off case only. To test this hypothesis, we have recorded ganglion cell responses from the optic tract fibers of anesthetized cat. The mean and standard deviations of responses to on-off and contrast-reversed patterns were compared. We found that all but one of the cells that yielded statistically significant data confirmed the hypothesis. These results largely support the theoretical prediction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0762
    Keywords: Key words Echolocation  ;  Duckweed  ;  Prey discrimination  ;  Vespertilionidae  ;  Lemnaceae  ;  Bats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Daubenton's bat, a trawling vespertilionid bat species, hunts for insects that fly close to, or rest on, the water surface. During summer, many ponds at which Daubenton's bats hunt become gradually covered with duckweed. The purpose of this study was to investigate the effects of duckweed cover on the hunting behaviour of Daubenton's bats and on the ultrasound-reflecting properties of the water surface. Our study revealed the following. (1) Daubenton's bat avoids water surfaces covered with duckweed. (2) Prey abundance was related to the number of foraging Daubenton's bats but was independent of duckweed cover. (3) When mealworms were presented among standardized amounts of duckweed to naturally foraging Daubenton's bats, they caught significantly less mealworms when the duckweed cover was increased. (4) Measurements with ultrasonic signals show that a water surface covered with duckweed returns a much stronger background echo at small angles (i.e. parallel to the water surface) compared to an uncovered water surface. It seems likely that a cover of duckweed on the water surface interferes with prey detection by masking the echoes returning from prey. (5) It was relatively difficult for the bats to discriminate small patches of duckweed from mealworms. The proposed discrimination mechanism for this trawling bat species suggests that single duckweed patches can also be mistaken for natural prey by Daubenton's bats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-08-15
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-01
    Print ISSN: 1097-6256
    Electronic ISSN: 1546-1726
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-26
    Description: Under optimal conditions, just 3–6 ms of visual stimulation suffices for humans to see motion. Motion perception on this timescale implies that the visual system under these conditions reliably encodes, transmits, and processes neural signals with near-millisecond precision. Motivated by in vitro evidence for high temporal precision of motion signals in the primate retina, we investigated how neuronal and perceptual limits of motion encoding relate. Specifically, we examined the correspondence between the time scale at which cat retinal ganglion cells in vivo represent motion information and temporal thresholds for human motion discrimination. The timescale for motion encoding by ganglion cells ranged from 4.6 to 91 ms, and depended non-linearly on temporal frequency, but not on contrast. Human psychophysics revealed that minimal stimulus durations required for perceiving motion direction were similarly brief, 5.6–65 ms, and similarly depended on temporal frequency but, above ~10%, not on contrast. Notably, physiological and psychophysical measurements corresponded closely throughout (r = 0.99), despite more than a 20-fold variation in both human thresholds and optimal timescales for motion encoding in the retina. The match in absolute values of the neurophysiological and psychophysical data may be taken to indicate that from the lateral geniculate nucleus (LGN) through to the level of perception little temporal precision is lost. However, we also show that integrating responses from multiple neurons can improve temporal resolution, and this potential trade-off between spatial and temporal resolution would allow for loss of temporal resolution after the LGN. While the extent of neuronal integration cannot be determined from either our human psychophysical or neurophysiological experiments and its contribution to the measured temporal resolution is unknown, our results demonstrate a striking similarity in stimulus dependence between the temporal fidelity established in the retina and the temporal limits of human motion discrimination.
    Electronic ISSN: 2411-5150
    Topics: Medicine , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...