ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
  • 1
    Publication Date: 2018-12-05
    Description: This article describes a design procedure for elastic buildings equipped with linear and nonlinear energy dissipating devices. The objective is to achieve a design that responds to a target building performance following a simple and robust step-by-step algorithm. The proposed procedure identifies first the modal significance of key design performance indicators and controls the modal properties by solving a singular two-parameter eigenvalue problem. For that purpose, a new modal significance metric is proposed, and a target frequency shift and damping ratio for the complete structure are obtained from the so-called iso-performance design curves. The design algorithm employs linear-equivalent stiffness and damping properties, which are then transformed into parameters characterizing inelastic force-deformation constitutive models corresponding to physical devices. The design algorithm leads to an optimal damper distribution corresponding to the minimum global amount of supplemental equivalent damping needed to achieve a maximum modal perturbation. The design procedure is first demonstrated using a five-story building example and then a real and complex 22-story free-plan building with two towers of rhomboid-shape plan with a very singular dynamic behavior. © 2018 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-08-01
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-08-01
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-15
    Description: This research investigates the seismic and harmonic response of a true free-plan tall building equipped with two tuned pendular inertial masses (TMs) and magnetorheological (MR) dampers. Construction of this proof-of-concept building was completed in 2007, and it is the first of its class in Chile. This article provides research results associated with this specific implementation; however, in order to make the results applicable to other building cases a parametric study was considered. A brief description of the structure and TM implementation together with the nonlinear equations of motion of the TM-MR damper assembly are presented. Building displacements and accelerations are computed and analyzed for a suite of subduction-type and near field ground motions. Besides, a new physical controller for the MR dampers is proposed and analyzed. The performance of this controller is compared with that of benchmark LQR controllers. In general, the TM-MR damper assembly improves the lateral performance of this structure for lateral harmonic excitations. However, the expected peak and RMS response modification factors and efficacy of the solution for earthquake excitations are strongly dependent on the frequency content of the excitation. Copyright © 2010 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-01-01
    Description: This investigation deals with the analytical formulation and experimental validation of a prestressed reinforced concrete seismic isolator with kinematic constraints at both ends. The kinematic isolator was proposed initially as a low-cost solution for seismic protection of low-income people housing usually placed at the periphery of big cities where regular to bad soil conditions are common. So, the isolator is also a pile foundation with a central prestressed cable and two rolling steel surfaces at the top and bottom ends. By varying the shapes of the end rolling surfaces, different force-deformation constitutive relationships for the isolator may be obtained. Energy dissipation is introduced by yielding of passive reinforcement at the rolling interphase. Apart from stating the large-deformation formulation of the element, several relevant aspects of the behaviour of these devices are studied herein, such as the increase in the tension of the central prestressed cable, responsible for the self-centring action of the isolator, the floor uplift that results from the geometry of the isolator, and the vertical stability of the system. Experimental and theoretical results obtained for a group of 9 testing specimens show an excellent agreement in the force-deformation constitutive relationship. Although not the intent of this article, the device proposed may be extended directly as a coupling beam element for shear wall systems. Copyright © 2006 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-08-25
    Description: This paper summarizes the relevant results of the design, construction, testing, and implementation of a nominal 120 kN magnetorheological damper developed to control a free-plan tall building in Santiago, Chile, equipped with two 160-ton tuned masses. Cyclic as well as hybrid simulation tests were performed on the prototype damper. Global building responses using measured MR properties showed good correlation with analytical estimations. Also, a proposed physical controller for the MR damper was validated through hybrid and building pull-back tests. Its performance is essentially equivalent to that of an LQR controller, but the information needed in its implementation is considerably less. Pull-back tests of 10cm amplitude were performed on one mass along the flexible edge of the building and its response controlled using the passive and controlled modes of the MR damper. The MR damper was capable of controlling the TM displacements very effectively, as well as the simulated building response for different ground motions and harmonic excitation. Copyright © 2010 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-07
    Description: Reinforced concrete shear walls are used because they provide high lateral stiffness and resistance to extreme seismic loads. However, with the increase in building height, these walls have become slenderer and hence responsible of carrying larger axial and shear loads. Because 2D/3D finite element inelastic models for walls are still complex and computationally demanding, simplified but accurate and efficient fiber element models are necessary to quickly assess the expected seismic performance of these buildings. A classic fiber element model is modified herein to produce objective results under particular loading conditions of the walls, that is, high axial loads, low axial loads, and nearly constant bending moment. To make it more widely applicable, a shear model based on the modified compression field theory was added to this fiber element. Consequently, this paper shows the formulation of the proposed element and its validation with different experimental results of cyclic tests reported in the literature. It was found that in order to get objective responses in the element, the regularization techniques based on fracture energy had to be modified, and nonlinearities because of buckling and fracture of steel bars, concrete crushing, and strain penetration effects were needed to replicate the experimental cyclic behavior. Thus, even under the assumption of plane sections, which makes the element simple and computationally efficient, the proposed element was able to reproduce the experimental data, and therefore, it can be used to estimate the seismic performance of walls in reinforced concrete buildings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-24
    Description: Reinforced concrete shear wall buildings have shown, in statistical terms, an adequate performance in past seismic events. However, a specific damage pattern was observed in 2010 Chile earthquake in some shear walls located in the lower building stories, usually associated with high axial stresses, lack of transverse reinforcement, and vertical irregularity. Results show that the nature of this failure led to a sudden degradation in strength and stiffness of walls and resulted in very limited ductility. This research aims to study analytically this damage pattern of shear wall buildings during the 2010 earthquake. By starting with two-dimensional inelastic pushover finite element models using diana, two walls that were severely damaged during the earthquake were studied in detail using different load patterns and stress–strain constitutive relationships for concrete in compression. These models were validated with experimental data of four reinforced concrete walls available in the literature. It can be shown that the geometry of the damage in the building walls cannot be correctly represented by conventional pushover load patterns that ignore the lateral and axial interaction. Indeed, the failure mechanism of walls shows strong coupling between lateral and vertical deformations within the plane of the wall. Results shown for a three-dimensional inelastic analysis of the building are consistent with these two-dimensional results, and predict a brittle failure of the structure. However, these models predict a large increase in axial load in the walls, which needs to be validated further with more experimental and analytical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-03-26
    Description: This article summarizes the work done by the authors in seismic isolation over the past six years in Chile. First, a general evaluation of the optimal values of the yield level of the isolation system is performed, focusing on the idea of, but not restricted to, the use of lead-rubber bearings. These optimal values are obtained for two performance objectives: to minimize the base shear in the superstructure and to control the isolator deformation. They were used in the design and construction of two important isolated buildings that are described herein; a short description of the more relevant aspects of the design and implementation of the isolation system in these two buildings is also presented. Furthermore, results from a long testing program conducted on more than 260 full-size elastomeric isolators are summarized and discussed. It is shown that these experimental results enable the elastomeric compounds to be characterized quite accurately by testing reduced-scale specimens with elastomer thickness identical to that used in the full-size isolators. Also, results from isolator constitutive modeling, scragging, and creep in the short term are briefly discussed. Inelastic analyses were performed in the structures in order to evaluate realistic interstory drift and floor acceleration response reduction factors due to the isolation design used. It is shown that in spite of the isolation system, minor inelastic excursions of the primary structure are expected, leading to smaller drift and acceleration reduction factors than those obtained from assuming an elastic response of the superstructure. In any case, seismic isolation is shown to be a very competitive alternative, technically and economically, for building design in Chile. Although it may be difficult to extrapolate this experience to other environments, the results presented herein demonstrate that seismic isolation is a technique that can be effectively used to mitigate seismic hazards in developing countries. © 2004 John Wiley and Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-02-11
    Description: The earthquake behavior of structures with supplemental copper dampers is evaluated in this study. The investigation is divided into two parts: (i) an experimental work with seven pairs of hourglass copper dampers of different aspect ratios and side profiles; and (ii) a parametric study of 6-, 12-, and 25-story planar structures with elastic as well as inelastic behavior in the primary structure and copper dampers. The copper used in this study is electrolytic tough pitch (ETP) copper Cl1000; probably the most commonly used of all coppers; ductile, with a low-yield, and highly resistant to corrosion. Experimental results demonstrate that all copper plates reached stable angular distortions of the order of γ = 25%, which implies transverse distortions in the devices larger than 40mm. The behavior of the devices is highly dependent on the aspect ratio of the plate, h/t, and a recommendation is made to use plates in the range 11 ≤h/t≤ 18. Plates beyond this range exhibit either large stress and strain concentrations in the neck of the device or a strong influence of axial deformations in their cyclic behavior. The inelastic earthquake response of structures with such devices shows that drift reduction factors of the order of 30 to 40% can be achieved with reasonably economic designs. It is also shown that the efficiency of these devices depends on the soil conditions and flexibility of the primary structure. Finally, it is concluded that supplemental copper dampers are a good alternative for drift reduction in a wide range of structural layouts, ranging from coupled shear-wall systems to moment-resisting frames, and for impulsive as well as non-impulsive ground motions. © 2003 John Wiley and Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...