ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 63 (1999), S. 437-442 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: -1 . Out of 14 soil samples, three did not show WR regardless of temperature treatment or soil water content, four had single peaks in WR as a function of water content, and seven had double peaks in WR, one peak at very low and one peak at higher soil water content. Results from comparison experiments with freeze-dried soil samples implied that the WR peak at lower soil water contents was caused mainly by temperature effects, while the peak at higher soil water contents was related to water content only. In water repellent soil the smaller soil size fractions exhibited the highest degree of water repellency. This can partly be explained by higher organic matter content in the fractions with smaller particle size. As water repellency is dependent on soil water content, performing the WR test solely on dry soils can lead to the wrong classification regarding whether a soil is water repellent or not.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 63 (1999), S. 493-500 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: 3 m-3 (across a water content range of 0.01 ≤θ≤ 0.135 m3 m-3). Coil probes, which were small enough to be located at different positions in several of the wetting-front fingers, indicated lateral movement of water from the center of the finger toward the outer fringe surrounding the finger. Profiles of the vertical soil water distribution within a finger measured with the coil probe compared well with a profile from literature measured by the moisture-content-visualization technique. It was concluded that the TDR coil probe is capable of obtaining direct measurements of θ with high spatial and temporal resolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-13
    Description: Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally developed for sieved, repacked soil was extended to two simple, linear regions to characterize gas diffusion and functional pore-network structure also in intact, structured soil systems. Based on the measurements in soils with markedly different pore regions, we showed that the two linear regions can denote a percolation threshold where soil gas diffusion ceases due to interconnected water films, preferential gas diffusion in fracture networks (e.g., fractured limestone), and intra-aggregate or intramatrix gas diffusion. From measured or three-region WLR (3WLR) modeled gas diffusivity, we derived a simple pore connectivity index, C ip (ranging from 0 to 1), that showed a linear behavior with air-filled porosity () for sieved, repacked soils ranging from 6 to 54% clay. We suggest that deviation from this C ip - line is a direct measure of soil structure. The new 3WLR model could accurately describe gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new C ip function provided distinct soil structural fingerprints from moist to dry conditions for all porous media. We further used the 3WLR and C ip analyses to discuss the decreasing trend in gas diffusion percolation threshold with soil compaction.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-01
    Description: The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils ranged from 0.1 to 0.44 kg kg-1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r 〉 0.91, P 〈 0.001) for all soils. Only for two sites was the WDC content correlated to the content of clay not associated with organic C (r 〉 0.89, P 〈 0.001), calculated as a function of total organic C and total clay. The colloid release rates were highly correlated with the total clay content (r 〉 0.84, P 〈 0.001). The WDC content in moist aggregates measured using laser diffraction was correlated with the WDC content measured using a more classical end-over-end method (r 〉 0.89, P 〈 0.05) and in 100-cm3 undisturbed soil cores (r 〉 0.89, P 〈 0.05). The universal correlation between the contents of WDC and total clay could be highly useful in risk assessments of colloids and colloid-facilitated transport of environmental contaminants.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-14
    Description: The globally used herbicide glyphosate [ N -(phosphonomethyl)glycine] and its most frequently detected metabolite, aminomethylphosphonic acid (AMPA), were studied in a unique 12-yr field-scale monitoring program. The leaching of glyphosate, AMPA, and soil particles was studied in a shallow drainage system beneath a 1.26- ha field. Five annual glyphosate applications were applied with different autumn application dates. Solute mass flux from the drain system following the five glyphosate applications were compared to determine how different factors affect the leaching of glyphosate, AMPA, and particles. Glyphosate and AMPA leaching were highly event driven, controlled by the time and intensity of the first rainfall event after glyphosate application. A high similarity in cumulative drainage and leached pesticide masses with time suggests near-constant drainage and leaching rates. There was no clear relationship between particle-facilitated transport and the transport of glyphosate or AMPA. However, soil particles, glyphosate, and AMPA all showed distinct, simultaneous concentration curves, indicating common dominant transport mechanisms. Also, soil-water content at the time of application and the level of the groundwater table relative to the drain depth exerted clear controls on detection of solutes in the drainage water. To summarize our findings, we present a leaching risk chart to illustrate the dependence of glyphosate, AMPA, and soil particle leaching based on rainfall intensity and the timing of rainfall events after glyphosate application.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-19
    Description: The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements of air permeability ( K a ) and saturated hydraulic conductivity ( K sat ). The CT number of the matrix (CT matrix ), which represents the moist bulk density of the soil matrix, was obtained from the CT scans as the average CT number of the voxels in the grayscale image excluding macropores and stones. The CT matrix showed the best relationships with the solute transport characteristics, especially the time by which 5% of the applied mass of tritium was leached, known as the 5% arrival time ( t 0.05 ). The CT-derived macroporosity (pores 〉1.2 mm) was correlated with K a and log 10 ( K sat ). The correlation improved when the limiting macroporosity (the minimum macroporosity for every 0.6-mm layer along the soil column) was used, suggesting that soil layers with the narrowest macropore section restricted the flow through the whole soil column. Water, air, and solute transport were related with the CT-derived parameters by using a best subsets regression analysis. The regression coefficients improved using CT matrix , limiting macroporosity, and genus density, while the best model for t 0.05 used CT matrix only. The scanning resolution and the time for soil structure development after mechanical activities could be factors that increased the uncertainty of the relationships. Nevertheless, the results confirmed the potential of X-ray CT visualization techniques for estimating fluxes through soil at the field scale.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-15
    Description: The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, D p , depends not only on soil moisture content, texture, and compaction but also on the local-scale variability of these. Different predictive models have been developed to estimate D p in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made adaptive for different soil structure conditions (repacked, intact) by introducing a media complexity factor ( C m ) in the dry media term of the model. With C m = 1, the new structure-dependent WLR (SWLR) model accurately predicted soil-gas diffusivity ( D p / D o , where D o is the gas diffusion coefficient in free air) in repacked soils containing between 0 and 54% clay. With C m = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple D p / D o models also depending solely on total and air-filled porosity. With C m = 3, the SWLR performed well as a lower-limit D p / D o model, which is useful in terms of predicting critical air-filled porosity for adequate soil aeration. Because the SWLR model distinguishes between and well represents both repacked and intact soil conditions, this model is recommended for use in simulations of gas diffusion and fate in the soil vadose zone, for example, as a key element in developing more accurate climate change models.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-21
    Description: The gas diffusion coefficient, air permeability, and their interrelations with air-filled porosity are essential for characterization of diffusive and convective transport of gases in soils. Variations in soil bulk density can affect water retention, air-filled pore space, and pore-network connectivity and tortuosity and, thereby, control gas diffusion and air permeability. Considering 86 undisturbed core samples with variable bulk densities that were extracted on a 15 by 15 m grid from the top layer of a sandy field, the effects of soil bulk density on gas transport parameters and the soil water characteristic were investigated. Interactions with soil organic matter, sand, and clay fractions were also examined. To evaluate bulk density effects, two constitutive parameters were derived from each of the three measured relationships. The Campbell pore-size distribution index ( b ) and the air-entry matric potential ( ae ) were derived from the soil water characteristic; the diffusive percolation threshold ( DPT ), the air-filled porosity where gas diffusivity ceases to almost zero because of interconnected water films creating isolated–inactive air content, and a pore-network connectivity index ( A 2 ) were derived from the gas diffusivity curve, and the analogous parameters convective percolation threshold ( CPT ) and convective pore-network connectivity index ( B 2 ) from the air permeability curve. All six parameters showed significant negative correlations with bulk density. To further account for the effects of both bulk density and macroporosity in parametric gas transport models, a diffusive-analog macroporosity–dependent model (DAMP) for gas diffusivity and a generalized Kawamoto et al. model (GK) for air permeability, which yielded improved predictive capabilities when compared with previous models, were developed. Both new models apply a reference point of prediction at –100 cm H 2 O matric potential (macroporosity drained), corresponding to the point where analysis of pore-network tortuosity (T) and equivalent pore diameter for gas transport ( d g ) showed diminishing effects of water blockage on gas transport in the sandy soil.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-21
    Description: Preferential flow and transport in structured soils can be intimately linked to numerous environmental problems. Surface-applied chemicals are susceptible to rapid transport to deeper depths in structural soil pores, thereby potentially contaminating valuable environmental resources and posing risks to public health. This study focused on establishing links between the structural pore space and preferential transport using a combination of standard physical measurement methods for air and water permeabilities, breakthrough experiments, and X-ray computed tomography (CT) on large soil columns. Substantial structural heterogeneity that resulted in significant variations in flow and tracer transport was observed, despite the textural similarity of the investigated samples. Quantification of macropore characteristics with X-ray CT was useful but not sufficient to explain the variability in air permeability, saturated hydraulic conductivity, and solute transport. This was due to the limited CT scan resolution and large structural variability below this resolution. However, CT matrix , a new parameter derived from the CT number of the matrix excluding stones and large mostly air-filled macropores, was found to be useful for determining the magnitude of preferential flow under boundary conditions of constant, near-saturated flow.
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...