ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1965-03-22
    Print ISSN: 0031-899X
    Electronic ISSN: 1536-6065
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-14
    Description: This effects of reconditioning on the performance of NiCd batteries are reviewed. These effects are correlated with cell experiments and individual electrode investigations. The effects of reconditioning on the positive electrode performance are found to be significant. A mechanism is proposed that rationalizes the operation of the nickel electrode and suggests that reconditioning minimizes depth of discharge stress during use and maintains uniformity of the active material.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Goddard Space Flight Center The 1982 Goddard Space Flight Center Battery Workshop; p 324-345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA Goddard Space Flight Center, Greenbelt, Md. The 1986 Goddard Space Flight Center Battery Workshop; p 311-333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: During the individual cell short-down procedures often used for storing or reconditioning nickel-cadmium (Ni-Cd) batteries, it is possible for significant reversal of the lowest capacity cells to occur. The reversal is caused by the finite resistance of the common current-carrying leads in the resistive network that is generally used during short-down. A model is developed to evaluate the extent of such a reversal in any specific battery, and the model is verified by means of data from the short-down of a f-cell, 3.5-Ah battery. Computer simulations of short-down on a variety of battery configurations indicate the desirability of controlling capacity imbalances arising from cell configuration and battery management, limiting variability in the short-down resistors, minimizing lead resistances, and optimizing lead configurations.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Goddard Space Flight Center The 1984 Goddard Space Flight Center Battery Workshop; p 323-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: In the early 1980's the NASA Lewis group addressed the topic of designing nickel hydrogen cells for LEO applications. As published in 1984, the design addressed the topics of gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. This design effort followed principles set forth in an earlier Lewis paper that addressed the topic of pore size engineering. At about that same time, the beneficial effect on cycle life of lower electrolyte concentrations was verified by Hughes Aircraft as part of a Lewis funded study. A succession of life cycle tests of these concepts have been carried out that essentially verified all of this earlier work. During these past two decades, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research efforts carried out at several laboratories. At The Aerospace Corporation, Dr. Zimmerman has been developing a sophisticated model of an operating nickel hydrogen cell which will be used to model certain mechanisms that have contributed to premature failures in nickel hydrogen and nickel cadmium cells. During the course of trying to understand and model abnormal nickel hydrogen cell behaviors, we have noted that not enough attention has been paid to the potassium ion content in these cells, and more recently batteries. Several of these phenomenon have been well known in the area of alkaline fuel cells, but only recently have they been examined as they might impact alkaline cell designs. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium devices, Once these phenomenon are understood conceptually, the impact of potassium content on a potential cell design can be evaluated with the aid of an accurate model of an operating cell or battery. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design: (1) The gamma phase uptake of potassium ion can result in a lowering of the electrolyte concentration. This leads to a higher electrolyte resistance as well as electrolyte diffusional limitations on the discharge rate. This phenomenon will also impact the response of the cell to a reconditioning cycle. (2) The impact of low level shunt currents in multi-cell con figurations will result in the movement of potassium ion from one part of the battery to another. This will impact the electrolyte volume/vapor pressure relationships within the cell or battery. (3) The transport of water vapor from place to place under the driving force of a tempetature gradient has already impacted cells for the case where water vapor is condensed on a colder cell wall. The paper will explore the convective and diffusive movement of gases saturated with water vapor from a warmer plate pack to a cooler one - both with and without liquid communication.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The destructive physical analysis (DPA) of electrochemical devices is an important part of the overall test. Specific tests were developed to investigate the degradation mode or the failure mechanism that surfaces during the course of a cell being assembled, acceptance tested, and life-cycle tested. The tests that have been developed are peculiar to the cell chemistry under investigation. Tests are often developed by an individual or group of researchers as a result of their particular interest in an unresolved failure mechanism or degradation mode. A series of production, operational, and storage issues that were addressed by the Electrochemistry Group at The Aerospace Corporation are addressed. As a result of these investigations, as well as associated research studies carried out to develop a clearer understanding of the nickel oxyhydroxide electrode, a series of unique and useful specialized tests were developed. Some of these special tests were assembled to describe the methods that were found to be particularly useful in resolving a wide spectrum of manufacturing, operational, and storage issues related to nickel-hydrogen cells. The general methodology of these tests is given here with references listed to provide the reader with a more detailed understanding of the tests. The tests are classified according to the sequencing, starting with the impregnation of the nickel plaque material and culminating with the storage of completed cells. The details of the wet chemical procedures that were found to be useful because of their accuracy and reproducibility are given. The equations used to make the appropriate calculations are listed.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-CR-192318 , NAS 1.26:192318 , ATR-93(3821)-1 , AD-A261681
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A new procedure described here was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.
    Keywords: METALLIC MATERIALS
    Type: NASA-CR-196961 , NAS 1.26:196961 , ATR-94(8010)-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...