ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution of supporting gas turbine engines with air lubricated hydrodynamic bearings. Foil air bearings have existed for almost fifty years, yet their commercialization has been confined to relatively small, high-speed systems characterized by low temperatures and loads, such as in air cycle machines, turbocompressors and micro-turbines. Recent breakthroughs in foil air bearing design and solid lubricant coating technology, have caused a resurgence of research towards applying Oil-Free technology to more demanding applications on the scale of small and mid range aircraft gas turbine engines. In order to foster the transition of Oil-Free technology into gas turbine engines, in-house experiments need to be performed on foil air bearings to further the understanding of their complex operating principles. During my internship at NASA Glenn in the summer of 2003, a series of tests were performed to determine the internal temperature profile in a compliant bump- type foil journal air bearing operating at room temperature under various speeds and load conditions. From these tests, a temperature profile was compiled, indicating that the circumferential thermal gradients were negligible. The tests further indicated that both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. As a result of the findings from the tests done during the summer of 2003, it was decided that further testing would need to be done, but with a bearing of a larger diameter. The bearing diameter would now be increased from two inches to three inches. All of the currently used testing apparatus was designed specifically for a bearing that was two inches in diameter. Thus, my project for the summer of 2004 was to focus specifically on the scatter shield put around the testing rig while running the bearings. Essentially I was to design a scatter shield that would be able to accommodate the three inch bearing and that would also meet all safety requirements. Furthermore, the new scatter shield also had to house a heater, used for high-speed and temperature testing. Using Solidworks, a computer aided modeling program, I was able to accomplish the task set out for me and designed the new scatter shield. Furthermore, I also guided the fabrication process. As a result of this containment shield being designed, the Oil-Free turbomachinery team now has the ability to test bearings of larger diameters. Finally, it is expected that these tests will provide information useful for the validation of future analytical modeling codes.
    Keywords: Metals and Metallic Materials
    Type: Interm Summary Reports
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2004-213100 , ARL-TR-3200 , E-14575 , 2004 Annual Meeting and Exhibition; May 17, 2004 - May 20, 2004; Tornot; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Tests were performed to evaluate three different methods of utilizing air to provide thermal management control for compliant journal foil air bearings. The effectiveness of the methods was based on bearing bulk temperature and axial thermal gradient reductions during air delivery. The first method utilized direct impingement of air on the inner surface of a hollow test journal during operation. The second, less indirect method achieved heat removal by blowing air inside the test journal to simulate air flowing axially through a hollow, rotating shaft. The third method emulated the most common approach to removing heat by forcing air axially through the bearing s support structure. Internal bearing temperatures were measured with three, type K thermocouples embedded in the bearing that measured general internal temperatures and axial thermal gradients. Testing was performed in a 1 atm, 260 C ambient environment with the bearing operating at 60 krpm and supporting a load of 222 N. Air volumetric flows of 0.06, 0.11, and 0.17 cubic meters per minute at approximately 150 to 200 C were used. The tests indicate that all three methods provide thermal management but at different levels of effectiveness. Axial cooling of the bearing support structure had a greater effect on bulk temperature for each air flow and demonstrated that the thermal gradients could be influenced by the directionality of the air flow. Direct air impingement on the journal's inside surface provided uniform reductions in both bulk temperature and thermal gradients. Similar to the direct method, indirect journal cooling had a uniform cooling effect on both bulk temperatures and thermal gradients but was the least effective of the three methods.
    Keywords: Mechanical Engineering
    Type: NASA/TM-2006-214358 , E-15633 , ARL-TR-3799 , 2006 Annual Meeting and Exhibit; May 07, 2006 - May 11, 2006; Calgary, Alberta; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...