ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 9 (1988), S. 171-187 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A method is presented for the rigorous computation of the electric potential of molecules of arbitrary shape, under the assumption of continuous linear dielectric media. The computational technique involves finding the distribution of induced polarization charge on the molecular surface, and proceeds by an application of the method of boundary elements. The surface, which separates the molecular interior (of low dielectric constant) from the highly polar solvent, is given a piece-wise analytic representation as a collection of curvilinear elements. Given a set of internal fixed charges, the distribution of polarization-charge is found as a continuous function over the surface elements, and the electric potential (including all polarization effects) is then easily computed at any point. The method is applied to a spherical interface, and to several small molecules of biological interest, including a hexapeptide. The resulting potentials show good convergence in all cases. The future application of the method to macromolecules is discussed.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 603-622 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new method is presented for defining a smooth, triangulated analytic surface for biological molecules. The surface produced by the algorithm is well-suited for use with a recently developed polarizationcharge technique1 for the computation of the electrostatic potential of solvated molecules, and may also be used for calculations of molecular surface areas and volumes. The new method employs Connolly's definitions of contact, reentrant and saddle surface,2 but includes modifications that preclude the presence of self-interesting reentrant surface, and also insure a rigorous decomposition of contact regions into curvilinear finite elements. The triangulation algorithm may be used in conjunction with the electrostatic methods described previously to compute the electric potential of molecules of arbitrary shape in solution. Applications include the estimation of hydration enthalpies, computation of the electrostatic forces associated with solvation, estimation of interactions between separate charged species in solution, and computation of the three-dimensional form of the molecular electric potential. Test calculations are presented for a double-stranded dinucleotide, the polypeptide enkephalin, and the protein ferredoxin.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 575-583 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new technique is presented for incorporating hydration forces into molecular mechanics simulations. The method assumes the classical continuum approximation, where a solvated molecule is represented as a low-dielectric cavity of arbitrary shape embedded in a continuous region of high dielectric constant. Electrostatic effects are computed by first calculating the distribution of polarization charge (induced by the configuration of solute fixed charges) at the molecular surface. The hydration force at a particular atom is then found as the sum of the coulombic interaction with the induced surface charge, plus a purely mechanical contribution that arises from the pressure of the polarized solvent as it is pulled toward the solute. A procedure is developed to use the computed hydration forces in conjunction with the CHARMM molecular mechanics package to carry out energy minimizations in which the effects of solvation are explicitly included. This new technique also allows a detailed analysis of the relative balance of coulombic, hydration, and steric energies as a function of molecular conformation. The method is applied to the test case of a zwitterionic tripeptide (LYS-GLY-GLU), and the computational results suggest that hydration effects can play a significant role in determining a stable conformation for a solvated polar molecule. The future application to larger molecules is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...