ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-16
    Description: The aerosol properties of Mount Etna’s passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016–2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within $$sim 20,hbox {km}$$ ∼ 20 km from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12–0.14, daily average radiative forcings of $$-;4.5$$ - 4.5 and $$-;7.0,hbox {W/m}^2$$ - 7.0 W/m 2 , at TOA and surface, are found at a fixed location $$sim 7,hbox {km}$$ ∼ 7 km downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-01
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-29
    Description: Lidar observations are very useful to analyse dispersed volcanic clouds in the troposphere mainly because of their high range resolution, providing morphological as well as microphysical (size and mass) properties. In this work, we analyse the volcanic cloud of 18 May 2016 at Mt. Etna, in Italy, retrieved by polarimetric dual-wavelength Lidar measurements. We use the AMPLE (Aerosol Multi-Wavelength Polarization Lidar Experiment) system, located in Catania, about 25 km from the Etna summit craters, pointing at a thin volcanic cloud layer, clearly visible and dispersed from the summit craters at the altitude between 2 and 4 km and 6 and 7 km above the sea level. Both the backscattering and linear depolarization profiles at 355 nm (UV, ultraviolet) and 532 nm (VIS, visible) wavelengths, respectively, were obtained using different angles at 20°, 30°, 40° and 90°. The proposed approach inverts the Lidar measurements with a physically based inversion methodology named Volcanic Ash Lidar Retrieval (VALR), based on Maximum-Likelihood (ML). VALRML can provide estimates of volcanic ash mean size and mass concentration at a resolution of few tens of meters. We also compared those results with two methods: Single-variate Regression (SR) and Multi-variate Regression (MR). SR uses the backscattering coefficient or backscattering and depolarization coefficients of one wavelength (UV or VIS in our cases). The MR method uses the backscattering coefficient of both wavelengths (UV and VIS). In absence of in situ airborne validation data, the discrepancy among the different retrieval techniques is estimated with respect to the VALR ML algorithm. The VALR ML analysis provides ash concentrations between about 0.1 ?g/m3 and 1 mg/m3 and particle mean sizes of 0.1 ?m and 6 ?m, respectively. Results show that, for the SR method differences are less than
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-22
    Description: Lidar observations are very useful to analyse dispersed volcanic clouds in the troposphere mainly because of their high range resolution, providing morphological as well as microphysical (size and mass) properties. In this work, we analyse the volcanic cloud of 18 May 2016 at Mt. Etna, in Italy, retrieved by polarimetric dual-wavelength Lidar measurements. We use the AMPLE (Aerosol Multi-Wavelength Polarization Lidar Experiment) system, located in Catania, about 25 km from the Etna summit craters, pointing at a thin volcanic cloud layer, clearly visible and dispersed from the summit craters at the altitude between 2 and 4 km and 6 and 7 km above the sea level. Both the backscattering and linear depolarization profiles at 355 nm (UV, ultraviolet) and 532 nm (VIS, visible) wavelengths, respectively, were obtained using different angles at 20◦ , 30◦ , 40◦ and 90◦ . The proposed approach inverts the Lidar measurements with a physically based inversion methodology named Volcanic Ash Lidar Retrieval (VALR), based on Maximum-Likelihood (ML). VALRML can provide estimates of volcanic ash mean size and mass concentration at a resolution of few tens of meters. We also compared those results with two methods: Single-variate Regression (SR) and Multi-variate Regression (MR). SR uses the backscattering coefficient or backscattering and depolarization coefficients of one wavelength (UV or VIS in our cases). The MR method uses the backscattering coefficient of both wavelengths (UV and VIS). In absence of in situ airborne validation data, the discrepancy among the different retrieval techniques is estimated with respect to the VALR ML algorithm. The VALR ML analysis provides ash concentrations between about 0.1 µg/m3 and 1 mg/m3 and particle mean sizes of 0.1 µm and 6 µm, respectively. Results show that, for the SR method differences are less than 〈10%, using the backscattering coefficient only and backscattering and depolarization coefficients. Moreover, we find differences of 20–30% respect to VALR ML, considering well-known parametric retrieval methods. VALR algorithms show how a physics-based inversion approaches can effectively exploit the spectral-polarimetric Lidar AMPLE capability.
    Description: Published
    Description: 1728
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...