ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-02-26
    Description: This paper presents an improved control strategy for both the rotor side converter (RSC) and grid side converter (GSC) of a doubly fed induction generator (DFIG)-based wind turbine (WT) system to enhance the low voltage ride through (LVRT) capability. Within the proposed control strategy, the RSC control introduces transient feed-forward compensation terms to mitigate the high frequency harmonic components and reduce the surge in the rotor currents. The proposed GSC control scheme also introduces a compensation term reflecting the instantaneous variation of the output power of the rotor side converter with consideration of the instantaneous power of grid filter impendence to keep the dc-link voltage nearly constant during the grid faults. To provide precise control, non-ideal proportional resonant (PR) controllers for both the RSC and GSC current regulation are employed to further improve dynamic performance. Simulations performed in Matlab/Simulink verify the effectiveness of the proposed control strategy.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-14
    Description: The increasing presence of wind power in power systems will likely drive the integration of large wind farms with electrical networks that are series-compensated to sustain large power flows. This may potentially lead to subsynchronous resonance (SSR) issues. In this paper, a supplementary controller on the grid-side converter (GSC) control loop is designed to mitigate SSR for wind power systems based on doubly fed induction generators (DFIGs) with back-to-back converters. Different supplementary controller feedback signals and modulated-voltage injecting points are proposed and compared based on modal analysis and verified through root locus analysis to identify the optimal feedback signal and the most effective control location for SSR damping. The validity and effectiveness of the proposed supplemental control are demonstrated on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation analysis using Matlab/Simulink.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...