ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2015-12-03
    Description: Aneuploidy causes a proliferative disadvantage, mitotic and proteotoxic stress in non-malignant cells ( Torres et al. Science 2007). Chromosome gain or loss, which is the hallmark of aneuploidy, is a relatively common event in Acute Myeloid Leukemia (AML). About 10% of adult AML display isolated trisomy 8, 11, 13, 21 (Farag et al. IJO 2002), or either an isolated autosomal monosomy or monosomal karyotype (Breems et al. JCO 2008). This evidence suggests that tumor-specific mechanisms cooperate to overcome the unfitness barrier and maintain aneuploidy. However, the molecular bases of aneuploid AML are incompletely understood. We analyzed a cohort of 166 cytogenetically-characterized AML patients (80 aneuploid (A-) and 86 euploid (E-)) treated at Seràgnoli Institute (Bologna). Aneuploidy was significantly associated with poor overall survival (median survival: 13 and 26 months in A-AML and E-AML respectively; p=.006, Fig.1). To identify AML-specific alterations having a causative and/or tolerogenic role towards aneuploidy, we integrated high-throughput genomic and transcriptomic analyses. We performed 100 bp paired-end whole exome sequencing (WES, Illumina Hiseq2000) of 70 samples from our A-AML and E-AML cohort of 166 patients. Variants where called with MuTect or GATK for single nucleotide variant and indels detection, respectively. AML samples were genotyped by CytoScan HD Array (Affymetrix). Gene expression profiling (GEP) was also conducted on bone marrow cells from 24 A-AML, 33 E-AML (≥80% blasts) and 7 healthy controls (HTA 2.0, Affymetrix). We detected a significantly higher mutation load in A-AML compared with E-AML (median number of variants: 31 and 15, p=.04) which was interestingly unrelated to patients' age (median age: 63.5 years in A-AML and 62 years in E-AML, Xie et al, Nat. Med. 2014). C〉A and C〉T substitutions, which are likely mediated by endogenous 5mCdeamination, were the most frequent alterations (Alexandrov et al. Nat. 2013). However, aneuploidy associated with an increased variability in terms of mutational signatures, with the majority of A-AML displaying 3 or more signatures compared to few E-AML cases (p=.04). WES analysis also revealed a specific pattern of somatic mutations in A-AML. A-AML had a lower number of mutations in signaling genes (p=.04), while being enriched for alterations in cell cycle genes (p=.01) compared with E-AML. The mutated genes were involved in different cell cycle phases, including DNA replication (MCM6, PURB, SSRP1), centrosome dynamics (CEP250, SAC3D1, HEPACAM2, CCP110), chromosome segregation (NUSAP1, ESPL1, TRIOBP), mitotic checkpoint (ANAPC7, FAM64A) and regulation (CDK9, MELK, ZBTB17, FOXN3, PPM1D, USP2). Moreover, genomic deletion of cell cycle-related genes was frequently detected in A-AML. Notably, ESPL1 which associated with aneuploidy, chromosome instability and DNA damage in mammary tumors (Mukherjee et al. Oncogene 2014) was mutated and also upregulated in A-AML compared with E-AML (p=.01), the latter showing expression levels comparable to controls. Among the top-ranked genes differentially expressed between A-AML and E-AML, we identified a specific signature characterized by increased CDC20 and UBE2C and reduced RAD50 and ATR in A-AML (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-06
    Description: Systemic mastocytosis (SM) includes a heterogeneous group of disorders ranging from indolent SM to mast cell leukemia (MCL). Somatic mutations in the Kit receptor tyrosine kinase (most frequently, D816V) can be detected in 〉90% of patients with SM and are thought to play a key pathogenetic role. Nevertheless, morphological and clinical diversity, as well as the fact that some patients are negative for KIT mutations, suggest that the underlying molecular picture is far from being fully elucidated. To shed further light on this issue, we undertook an integrated molecular genetic study of a KIT gene mutation-negative MCL patient who came to our attention in 2012 – a 63 year-old woman diagnosed with MCL, aleukemic variant (50-60% atypical mast-cells in the bone marrow [BM] smear; CD117+/CD2+/CD13+-/CD33+/CD59+ immunophenotype; serum tryptase, 2500 µg/L; no C-findings). The patient had received imatinib for 6 months, with no clinical benefit. The disease, however, had had an overall chronic clinical course for 6 more months until severe anemia occurred. The patient rapidly progressed and died after 21 months from diagnosis. After having obtained written informed consent, we extracted genomic DNA and total RNA from purified MCs isolated from BM at diagnosis and at progression, as well as DNA from saliva, and performed whole exome sequencing (WES) and RNA sequencing on an HiSeq1000 (Illumina, San Diego CA). Cytoscan HD arrays (Affymetrix, Santa Clara CA) were also used to scan for chromosomal gains and losses as well as for loss of heterozigosity (LOH). Among the mutated genes detected by WES, SETD2 stood out among others because two distinct putatively inactivating heterozygous mutations were identified, a frameshift insertion of a C in exon 20 (NM_014159:c.7595_7596insC: p.Gly2515ArgfsTer5) and a nonsense mutation in exon 15 (NM_014159:c.G6753T:p.Glu2234Ter). The two mutations were found to hit distinct alleles, pointing to a loss-of-function event. Western Blotting (WB), however, showed that only the 2234 a.a. Setd2 truncated isoform resulting from the nonsense mutation, losing the highly conserved WW and SRI functional domains, was detectable in the sample. The SETD2 gene encodes a histone methyltransferase nonredundantly responsible for trimethylation of lysine 36 of histone H3, a key hystone mark associated not only with active chromatin but also with transcriptional elongation, alternative splicing, DNA replication and repair. SETD2 gene mutations have been described in a variety of cancers and, more recently, have been found to be cooperating events in acute leukemia initiation and progression. In yeast, deletion of the SRI domain abolishes Set2-RNA polymerase II (PolII) interaction causing transcription elongation defects and abolishes K36 methylation. The truncated SETD2 isoform was actually found to lose the ability to bind RNAPolII, as shown by co-immunoprecipitation. Accordingly, RNA-sequencing showed evidence of spurious transcripts initiated from cryptic promoter-like sequences within genes rather than from canonical promoters. More importantly, WB confirmed that H3K36Me3 was completely abrogated. In line with the recently reported role of SETD2-dependent H3K36Me3 in homologous recombination (HR) repair and genome stability, Cytoscan HD arrays showed that LOH and several gains and losses at many chromosomal loci, undetectable at diagnosis, had been acquired at the time of progression. Haploinsufficiency of PSIP1 (recruiting HR machinery at double strand breaks) at 9p24.3 might have represented a cooperating event. Downmodulation of the Setd2 protein (in the presence of LOH but in the apparent absence of sequence variations other than polymorphisms) and reduced H3K36Me3 levels were detected in two more MCL cases, in which putative cooperative lesions were also identified. Results of WES and high resolution karyotyping of additional SM cases will be presented. Our findings point to epigenetic regulation and/or DNA repair as two candidate pathways deserving further investigation in an attempt to identify novel actors or mechanisms contributing to the pathogenesis and progression of SM, or novel modulators of disease phenotype. They also extend the recent observation that the molecular landscape of SM is much more complex than the initial finding of KIT mutations allowed to imagine. Supported by FP7 NGS-PTL project and Progetto Regione-Università 2010-12 (L. Bolondi) Disclosures Soverini: Novartis: Consultancy, Honoraria; Bristol-Meyers Squibb: Consultancy, Honoraria; Ariad: Consultancy, Speakers Bureau.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-03
    Description: Metabolic remodeling of cancer is controlled by metabolic enzymes having oncogenic or tumor suppressor functions, along with oncogenes and tumor suppressors, which cooperate with the tissue environment to define specific metabolic profiles (Yuneva et al. Cell met 2012). Dysregulated metabolic pathways contribute to the pathogenesis of Acute Myeloid Leukemia (AML), as demonstrated for IDH1/2 mutations, which force the production of the oncometabolite 2-Hydroxyglutarate (Ward et al. Cancer Cell 2010) and can be selectively targeted (Wang et al. Science 2013). However, the genetic determinants of leukemia metabolic plasticity are largely unexplored. To identify metabolism-related pathogenic mechanisms in AML, we screened 886 AML cases for targeted genomic alterations and performed Whole Exome Sequencing of 143 leukemia samples (100 bp paired-end, HiSeq2000, Illumina), focusing our analysis on 37 AML cases (34 at diagnosis and 3 at relapse). Mutations were called by MuTect and GATK. Moreover, transcriptional analysis was performed on bone marrow cells from 59 AML cases (≥80% blasts) and 7 healthy controls (HTA2.0, Affymetrix). By mapping the mutated genes into functional categories, we identified a previously undescribed class of mutations targeting metabolism-related genes, that we define metabolic acute leukemia genes (MALGs). MALG was the most represented category after signaling pathways (76/915 genomic alterations) and 29/37 patients carried at least one MALG mutation. MALG mutations mostly targeted biosynthesis and catabolism of lipids and of CoA (ACP2, PANK2), bioenergetic pathways, metabolism of amino acids and nucleotides (NUDT18, IMPDH2). Notably, IMPDH2 is a target of MYC, a known regulator of cancer cell metabolism, and balances the nucleotide pool required for DNA replication (Liu et al, Plos one 2008). IMPDH2 was not only mutated but also upregulated at mRNA level in AML compared with controls (p=0.0001), suggesting an oncogenic function of the gene in AML, which is under investigation. Moreover, MYC transcriptional network was affected by additional mutations targeting genes regulating MYC activity (HUWE1, ZBTB17, TRRAP) and degradation (HEPACAM). Mutations in amino acid metabolism affected the synthesis/degradation of serine (PHGDH), glycine (SHMT2), proline (PRODH), tryptophan(CYP1B1) and glutamate (OPLAH), with a glutamate-related metabolic signature being also enriched in AML. These results may be highly relevant to AML therapy, since they may identify patients suitable to glutaminase inhibitor treatment, which is under development by pharmaceutical companies. An additional subset of patients displayed mutations in glucose-dependent bioenergetic pathways: glycolysis (GPI), oxidative phosphorylation (ND1, ND4, ND5, CYTB) and pentose phosphate pathway (H6PD, PGLS). These mutations were mutually exclusive with KRAS/NRAS alterations, which were detected in 8/37 samples. Indeed, oncogenic KRAS stimulates glucose uptake and channeling of glucose intermediates into pentose phosphate pathway (Ying et al. Cell 2012). Mutations in the bioenergetic pathways occurred across different cytogenetic groups and were associated with a poor outcome in terms of overall survival (p=0.016 Fig.1) in our AML cohort. Along with mutations in KRAS- and MYC-oncogenic pathways, which are known to control metabolic processes, we identified a novel functional category of mutated genes involved in metabolism (MALG) in AML. Our results may suggest different types of metabolic remodeling across leukemia subgroups. Mutations targeting a common downstream metabolic pathway are mutually exclusive in our cohort, as shown by KRAS and genes involved in glucose-dependent bioenergetic processes. Glucose metabolism predicts clinical outcome and chemotherapy response in AML (Chen et al. Blood 2014). Our data further suggest that the mutational screening of glucose-related MALGs may define a new subgroup of patients, which could not be identified by cytogenetic analysis. These findings may have implication for AML treatment, since metabolic alterations and genomic determinants of metabolic remodeling are promising targets for tailored therapies, as recently shown for glutaminase and IDH1/2 inhibitors. Acknowledgments: EHA Research Fellowship award, FP7 NGS-PTL project, ELN, AIL, AIRC, progetto Regione-Università 2010-12 Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Cavo:JANSSEN, CELGENE, AMGEN: Consultancy. Martinelli:Novartis: Consultancy, Speakers Bureau; Pfizer: Consultancy; MSD: Consultancy; Ariad: Consultancy; BMS: Consultancy, Speakers Bureau; ROCHE: Consultancy; AMGEN: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-03
    Description: Acute Myeloid Leukemia (AML) is a highly heterogeneous disease and a complex network of events contribute to its pathogenesis. Chromosomal rearrangements and fusion genes have a crucial diagnostic, prognostic and therapeutic role in AML. A recent RNA sequencing (RNAseq) study on 179 AML revealed that fusion events occur in 45% of patients. However, the leukemogenic potential of these fusions and their prognostic role are still unknown. To identify novel rare gene fusions having a causative role in leukemogenesis and to identify potential targets for personalized therapies, transcriptome profiling was performed on AML cases with rare and poorly described chromosomal translocations. Bone marrow samples were collected from 5 AML patients (#59810, #20 and #84 at diagnosis and #21 and #32 at relapse). RNAseq was performed using the Illumina Hiseq2000 platform. The presence of gene fusions was assessed with deFuse and Chimerascan. Putative fusion genes were prioritized using Pegasus and Oncofuse, in order to select biologically relevant fusions. Chimeras not supported by split reads, occurring in reactive samples, involving not annotated or conjoined genes were removed. The remaining fusions were prioritized according to mapping of partner genes to chromosomes involved in the translocation or to Chimerascan and deFuse concordance. The CBFβ-MYH11 chimera was identified in sample #84, carrying inv(16) aberration, thus confirming the reliability of our analysis. Sample #59810 carried the fusion transcript ZEB2-BCL11B (Driver Score, DS=0.7), which is an in-frame fusion and a rare event in AML associated with t(2;14)(q21;q32). The breakpoint of the fusion mapped in exon 2 of ZEB2 (ENST00000558170) and exon 2 of BCL11B (ENST00000357195). Differently from previous data, this fusion transcript showed 3 splicing isoforms. Type 1 isoform is the full-length chimera and it retains all exons of both genes involved in the translocation. Type 2 isoform was characterized by the junction of exon 2 of ZEB2 and exon 3 of BCL11B. In type 3 isoform, exon 2 and 3 of BCL11B were removed, resulting in an mRNA composed by exon 2 of ZEB2 and exon 4 of BCL11B. Gene expression profiling showed an upregulation of ZEB2 and BCL11B transcripts in the patient's blasts, compared to 53 AML samples with no chromosomal aberrations in the 14q32 region. The same samples showed the WT1-CNOT2 chimera, which is a novel out-of-frame fusion (DS= 0.008) related to t(11;12) translocation, identified by cytogenetic analysis. Two new in-frame fusion genes were identified in sample #20: CPD-PXT1 (DS=0.07), which appeared as the reciprocal fusion product of t(6;17) translocation, and SAV1-GYPB, which remained cryptic at cytogenetic analysis (DS=0.8, alternative splicing events are being investigated). SAV1 was downregulated in sample #20 compared to our AML cohort, suggesting the putative loss of a tumour-suppressor gene. Sample #21 carried a t(3;12) translocation and RNAseq identified a novel fusion event between chromosomes 19 and 7, involving the genes OAZ and MAFK (DS=0.9). Finally, no chimeras were confirmed in sample #32 having a t(12;18) translocation. Our data suggest that fusion events are frequent in AML and a number of them cannot be detected by current cytogenetic analyses. Gene fusions cooperate to AML pathogenesis and heterogeneity and we are further investigating the oncogenic potential of the identified translocations. Moreover, the results firmly indicate that different approaches, including G-banding, molecular biology, bioinformatics and statistics, need to be integrated in order to better understand AML pathogenesis and improve patients' stratification, High-resolution sequencing analysis currently represent the most informative strategy to tailor personalized therapies. Acknowledgments: ELN, AIL, AIRC, progetto Regione-Università 2010-12 (L. Bolondi), Fondazione del Monte di Bologna e Ravenna, FP7 NGS-PTL project. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Martinelli:BMS: Speakers Bureau; MSD: Consultancy; Roche: Consultancy; ARIAD: Consultancy; Novartis: Speakers Bureau; Pfizer: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Background and Aim Systemic mastocytosis (SM) is characterized by a heterogeneous spectrum of disease variants with different clinical features and prognosis. In indolent SM (ISM), the clinical course is usually stable and patients (pts) have a normal life expectancy. In contrast, aggressive SM (ASM) and mast cell leukemia (MCL) are characterized by severe organ damage and are fatal forms with short survival times. All forms of SM share the presence of activating mutations in the KIT tyrosine kinase (most frequently, the D816V mutation), which suggests that cooperating events might be responsible for the profoundly different clinical presentation and outcome of advanced SM (ASM and MCL) as compared to ISM. However, no robust studies using genome-wide approaches to scan for additional molecular aberrations in ASM and MCL have been published to date. This prompted us to use exome and RNA sequencing and single nucleotide polymorphism (SNP)-arrays to search for novel (and potentially druggable) molecular lesions. Methods Seven pts with MCL, 6 pts with ASM and 2 pts with ISM were studied using whole exome sequencing (WES) and single nucleotide polymorphism (SNP)-arrays. WES (80x) was performed on a Hiseq 2500 (Illumina). SNP-arrays were done using Cytoscan HD Arrays (Affymetrix). Matched normal/mast cell DNA was analyzed in all but 2 archival MCL cases for whom no germline DNA source was available. RNA sequencing was also performed in 3/7 MCL and 1/6 ASM cases for whom high quality RNA was available. Data analysis and integration was performed according to in-house optimized pipelines. Results SNP-arrays found arm-level copy number (CN) or copy-neutral loss-of-heterozygosity (CN-LOH) events in 5/7 MCL pts (loss of 7p, 8p, 9q, 12p, 13q and CN-LOH at 4q, 18q and 21q). In contrast, ASM and ISM showed only focal CN and CN-LOH events. Overall, a median of 28 (range, 20-78) and 77 (range, 55-132) submicroscopic CN and CN-LOH events, respectively, were detected. The number of events did not significant differ between ISM, ASM and MCL. A total of 54, 102 and 1835 genes were significantly found to be recurrently involved in loss, gain and CN-LOH events, respectively. The average number of nonsynonymous mutations identified by WES was 15 in ISM and 35 in ASM and MCL. Signature analysis showed that the majority of sequence changes were C〉T transitions and C〉A transversions. Among genes recurrently mutated in ≥2 patients or concurrently identified by WES and SNP-arrays or known to be associated with cancer, some had already been reported to be mutated in SM: ASXL1, TET2, CBL, RUNX1, NRAS, IDH1, SRSF2, SF3B1. Alterations were also found in genes not previously implicated in SM, including RUNX3, MLL2, MLL3, CDC27, TP53BP1, CCND3, NCOR2, BCORL1, ATM, WRN, ARID1B, ARID3B, KDM1B, ARID4A, SETD1A, SETD1B, PRDM1. Pathway analysis showed enrichment of genetic lesions affecting the following cellular processes: PI3K/Akt and MAPK pathways, calcium signaling, chromatin modification, DNA methylation and DNA damage repair. RNA-seq results, filtered against those of a set of normal bone marrow samples, revealed a high number of RNA chimeras involving two adjacent genes in the same transcription orientation and invariably joining the pre-last exon of the upstream gene to the second exon of the downstream gene - a fusion pattern suggestive of intergenic splicing following transcription read-through events. Deletions at the intergenic region was excluded by SNP-arrays for all the predicted transcription-induced chimeras. In addition, in all the 4 pts analyzed, retention of some or all introns in mature transcripts was observed for some genes, including known tumor suppressors (TS) and other key genes like TP53, BAX, ERCC2, WRN, FANCD2, ATR; U2AF2, U2AF1, SRSF6. Conclusions SNP-array and WES analysis of SM revealed a heterogeneous landscape of molecular alterations, although some key cellular pathways were found to be recurrently altered. More interestingly, RNA-seq uncovered perturbation of transcript elongation and splicing in all the advanced SM pts analyzed. Intron retention, in particular, seems to be a novel recurrent mechanism of TS gene inactivation at the posttranslational level in advanced SM. The mechanisms leading to intron retention and their cellular consequences deserve further investigation. Supported by AIRC (project code 16996), progetto Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures Soverini: Bristol-Myers Squibb: Consultancy; Ariad: Consultancy; Novartis: Consultancy. Cavo:Celgene: Honoraria, Research Funding, Speakers Bureau; Janssen: Honoraria, Research Funding, Speakers Bureau; Amgen: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda: Honoraria. Valent:Novartis: Honoraria, Research Funding; Ariad: Honoraria, Research Funding; Amgen: Honoraria; Celgene: Honoraria, Research Funding; Deciphera Pharmaceuticals: Research Funding. Martinelli:MSD: Consultancy; Ariad: Consultancy, Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Genentech: Consultancy; Roche: Consultancy, Speakers Bureau; Novartis: Speakers Bureau; BMS: Speakers Bureau.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2014-12-06
    Description: Whole exome and transcriptome sequencing (WES and RNAseq) technologies are able to provide a comprehensive analysis of the genomic aberrations acquired by malignant cells, of their synergistic effects and functional consequences. In particular, RNAseq enables the detection of gene fusions originating from rare chromosomal translocations that have been involved in the pathogenesis of Acute Myeloid Leukemia (AML). We performed WES and RNAseq of AML patients to identify novel genetic abnormalities playing a causative role in leukemia development. We collected bone marrow or peripheral blood samples of 31 patients. Sequencing was performed using the Illumina Hiseq2000 platform. WES raw data were analysed with Whole-Exome sequencing Pipeline web tool for variants detection (WEP). The presence of gene fusions was assessed in RNAseq data with deFuse and Chimerascan. Selected genes fusions and variants were validated by Sanger sequencing. By RNAseq we identified a rare gene fusion transcript involving the BCL11B gene, which been previously suggested to play an oncogenic role in AML. The gene encodes for a zinc-finger protein participating to chromatin remodelling and regulating the differentiation and apoptosis of hematopoietic cells. The fusion was identified in a patient with poorly differentiated leukemia phenotype and unfavourable karyotypic abnormalities: 46,XX, t(2;14)(q21;q32), t(11;12)(p15;q22), who received standard chemotherapy, underwent allogeneic bone marrow transplantation and is currently in complete remission. Differently from previous data, the BCL11B translocation was associated neither with FLT3-ITD nor DNMT3A mutations. WES analysis revealed mutations in the TET2 and WTAP genes, which are known to act as co-players in the leukemic transformation. The exome data of our AML cohort identified neither INDELs nor nonsynonymous mutations in the BCL11Bgene, suggesting that the oncogenic function of BCL11B is activated by chromosomal translocations. Gene expression profiling showed a 4-fold upregulation of BCL11B transcript in the patient’s blasts, compared to 53 AML samples with no chromosomal aberrations in the 14q32 region, according to cytogenetic analysis. The increased expression of BCL11B was associated with an upregulation of potential targets including the antiapoptotic protein SPP1. Our data suggest that chromosomal translocations involving the BCL11B gene are rare events in AML and associate with somatic mutations in the malignant transformation of myeloid lineage cells, potentially by altering the differentiation and apoptotic processes. Future studies will investigate putative fusion partners of BCL11Band elucidate the biological consequences of its upregulation in AML pathogenesis. The results highlight the molecular heterogeneity of AML and the need for high-resolution sequencing analysis of leukemic samples at diagnosis in order to tailor personalized therapies. Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-06
    Description: Acute Myeloid Leukemia (AML) is a heterogeneous malignancy characterized by the expansion of myeloid precursor cells with limited or abnormal differentiation capacity. A relatively common event in AML is represented by chromosome gain or loss. Numerical chromosome abnormalities, which define aneuploidy, have a detrimental effect in primary non-malignant cells, since they dramatically reduce cellular fitness. However, evidence suggests that they have a causative role in tumorigenesis and are well tolerated in transformed cells belonging to the myeloid lineage. Aim of the study is to elucidate the pathogenic mechanisms causing and sustaining aneuploidy in AML in order to find novel potential therapeutic targets. A panel of genetic alterations was analyzed on 886 AML cases at Seràgnoli Institute in Bologna between 2002 and 2013. Among them, 31 samples were subjected to whole exome sequencing (WES, Illumina Hiseq2000). Raw data were processed with WES Pipeline web tool for variants detection. Gene expression profiling (GEP, Affymetrix) was performed on bone marrow cells from 49 AML patients at diagnosis with more than 80% blast cells, including 22 aneuploid cases (carrying monosomy, trisomy or a monosomal karyotype) and 27 cases with normal karyotype. The aneuploid status was confirmed by single nucleotide polymorphism (SNP) array. WES analysis of 13 aneuploid and 12 euploid AML cases revealed a significantly higher median value of genetic variants and mutated genes in aneuploid compared with euploid samples (aneuploid vs. euploid: median of variants, 30 vs. 20 (p=0.02) including nonsynonimous single nucleotide variants, frameshift insertions and deletions, stopgains; median of mutated genes, 25 vs. 17 (p=0.05); details will be presented at the meeting). Noticeably, by gene ontology analysis of mutated genes in the aneuploid cohort we observed a strong enrichment in genes regulating cell cycle, including chromosome organization (p=5.4x10-4) and mitotic sister chromatid cohesion (p=6.98x10-4), and chromatin modification (p=1.3x10-4), with most of the variants being not annotated in the COSMIC database. Euploid samples were enriched for mutations affecting genes involved in cytoskeleton (p=1.6x10-3) and metabolic activities (p=1.9x10-3). A number of genes mutated in the aneuploid cases belong to the APCCdc20 complex and localize on chromosomes generally spared by aneuploidy, supporting the key role of the identified aberrations in the molecular mechanisms leading to numerical chromosome abnormalities. Among several mutations predicted as “drivers” by DOTS-Finder tool (CCDC144NL, DNMT3A, GXYLT1, MESP1, TPRX1,TPTE, ZNF717), we defined some candidates involved in cell cycle regulation and DNA replication. Functional analysis are ongoing. Furthermore, a tumor suppressor function was associated with mutated genes involved in the DNA repair process. In our WES analysis, we identified a subgroup of genes linked to DNA damage response, including TP53, which are preferentially mutated in the aneuploid cohort. Since P53 is a limiting-factor in aneuploidy-induced tumorigenesis, we analyzed the mutational status in a larger cohort of AML patients by Next Generation sequencing (NGS) and Sanger sequencing. Interestingly, we identified TP53 mutations in 15/58 aneuploid vs. 1/36 euploid cases (p=3.8x10-3). Finally, differential expression of genes involved in DNA damage and integrity checkpoints was identified by GEP of aneuploid and euploid AML samples. Previous evidence showed that loss of the spindle checkpoint gene BUB1B induces aneuploidy and predisposes to tumorigenesis. Our data, obtained by integrated NGS and GEP approaches, support a causal link between mutations in a panel of genes involved in cell cycle control/chromosome organization and aneuploidy in AML. Genetic and transcriptional alterations of genes regulating DNA damage response were detected in our AML cohort, suggesting novel molecular mechanisms for the acquisition and/or maintenance of the aneuploid condition and consequently, of leukemogenesis. The results indicate that the identified genomic aberrations likely drive chromosome gain and/or loss in AML by cooperating with alterations affecting different pathways, in order to overcome the unfitness barrier induced by aneuploidy. Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...