ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-064 , 18th Engineering Mechanics Division Conference (EMD2007); Jun 03, 2007 - Jun 06, 2007; Blacksburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-18
    Description: MIT, Aurora Flight Sciences, and USC have collaborated to assess the feasibility of electric, hybridelectric, and turbo-electric propulsion for ultra-efficient commercial transportation. The work has drawn on the team expertise in disciplines related to aircraft design, propulsion-airframe integration, electric machines and systems, engineering system design, and optimization. A parametric trade space analysis has been carried out to assess vehicle performance across a range of transport missions and propulsion architectures to establish how electrified propulsion systems scale. An optimization approach to vehicle conceptual design modeling was taken to enable rapid multidisciplinary design space exploration and sensitivity analysis. The results of the analysis indicate vehicle aero-propulsive integration benefits enabled by electrification are required to offset the increased weight and loss associated with the electric system and achieve enhanced performance; the report describes the conceptual configurations than can offer such enhancements. The main contribution of the present work is the definition of electric vehicle design attributes for potential efficiency improvements at different scales. Based on these results, key areas for future research are identified, and extensions to the trade space analysis suitable for higher fidelity electrified commercial aircraft design and analysis have been developed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN72076 , NASA/CR—2019-220382
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...