ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-03-08
    Keywords: Age, maximum/old; Age, minimum/young; Beibuwan_Depression; China; Coexistence Approach (Mosbrugger, V & Utescher, T, 1997); DRILL; Drilling/drill rig; Epoch; Event label; Fushan_Depression; Leizhou_Peninsula; Lühe; Lunpola_Basin; Markam; Miaoli; Namling; NECLIME; NECLIME_campaign; Neogene Climate Evolution in Eurasia; Ninghai; Number of taxa; Paleontological sampling; PALSAMP; Precipitation, annual mean, maximum; Precipitation, annual mean, minimum; Precipitation, warmest month, maximum; Precipitation, warmest month, minimum; Precipitation of the driest month maximum; Precipitation of the driest month minimum; Precipitation of the wettest month maximum; Precipitation of the wettest month minimum; Sample code/label; Shihti; South China Sea; Taiwan; Taxa analyzed; Temperature, annual mean, maximum; Temperature, annual mean, minimum; Temperature, coldest month, maximum; Temperature, coldest month, minimum; Temperature, warmest month, maximum; Temperature, warmest month, minimum; Tibet; Toupo_Basin; Weizhou_Island; Xianju; Xiaolongtan; Yinggehai_Depression; Zhujiangkou_Basin
    Type: Dataset
    Format: text/tab-separated-values, 806 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yao, Yi-Feng; Bruch, Angela A; Mosbrugger, Volker; Li, Cheng-Sen (2011): Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3-4), 291-307, https://doi.org/10.1016/j.palaeo.2010.04.012
    Publication Date: 2023-01-13
    Description: Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
    Keywords: Beibuwan_Depression; China; DRILL; Drilling/drill rig; Fushan_Depression; Leizhou_Peninsula; Lühe; Lunpola_Basin; Markam; Miaoli; Namling; NECLIME; NECLIME_campaign; Neogene Climate Evolution in Eurasia; Ninghai; Paleontological sampling; PALSAMP; Shihti; South China Sea; Taiwan; Tibet; Toupo_Basin; Weizhou_Island; Xianju; Xiaolongtan; Yinggehai_Depression; Zhujiangkou_Basin
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Keywords: Abiespollenites sp.; Abies sp.; Abietineaepollenites microalatus; Abietineaepollenites sp.; Acer juanii; Acer sp.; Acronychia sp.; Actinodaphne nipponica; Adiantum sp.; Agathis sp.; Age, maximum/old; Age, minimum/young; Alangium aequalifolium; Alangium sp.; Albizzia bracteata; Albizzia miokalkora; Alchonea rugosa; Aleurites sp.; Alisma sp.; Alnipollenites quadrapollenites; Alnipollenites sp.; Alnipollenites verus; Alnus protomaximowizii; Alnus schmahausenii; Alnus sp.; Amaranthaceae; Amphora sp.; Anacardiaceae; Angiopteris sp.; Annutriporites iversenii; Anodendron sp.; Apocynaceae; Araliaceae; Araucariacites sp.; Araucaria sp.; Ardisia sp.; Artemisia sp.; Asplenium sp.; Athyriaceae; Baeckea sp.; Bambusa sp.; Beibuwan_Depression; Berberis sp.; Berchemia miofloribungda; Betulaceae; Betulaceoipollenites sp.; Betula mankongensis; Betula sp.; Betula utilis; Betula vera; Boenninghausenia sp.; Bombacaceae; Bombacacidites sp.; Boraginaceae; Botrychiaceae; Bridelia sp.; Broussonetia sp.; Buxapollis sp.; Caesalpinia sp.; Campanulaceae; Caprifoliaceae; Caprifoliipites sp.; Carpinipites sp.; Carpinus fargesiana; Carpinus grandis; Carpinus sp.; Carya cathayensis; Caryapollenites simplex; Caryapollenites sp.; Carya sp.; Cassia oblonga; Cassia suffruticosa; Castanea miomollissima; Castanea sp.; Castaneoideae; Castanopsis miocuspidata; Casuarinidites cainozoicus; Cedripites sp.; Cedrus sp.; Celastraceae; Celastrus sp.; Celtis sp.; Ceratopteris sp.; Chenopodiaceae; Chenopodipollis microporatus; Chenopodipollis multiplex; Chenopodipollis multiporatus; Chenopodipollis sp.; Chenopodium sp.; China; Cibotium sp.; Cibotiumspora sp.; Cinnamomum sp.; Cinnamonum oguniense; Cleyera sp.; Cocconeis sp.; Compositae; Concentricystes sp.; Coniogramme devolii; Coniogramme sp.; Convolvulus sp.; Cooksonella sp.; Cornaceae; Cornus sp.; Corylopsis princeps; Corylopsis sp.; Corylus macquarii; Corylus sp.; Cosinodiscus sp.; Crassoretitriletes nanhaiensis; Crassoretitriletes sp.; Crassoretitriletes vanraadshoovenii; Cruciferae; Cupuliferoipollenites oviformis; Cupuliferoipollenites pusillus; Cupuliferoipollenites sp.; Cyathea sp.; Cyathidites minor; Cyclobalanopsis mandraliscae; Cyclobalanopsis praegilva; Cyclobalanopsis sp.; Cyclophorusisporites sp.; Cyperaceae; Cyperacites sp.; Cyrillaceaepollenites megaexactus; Dacrydiumites florinii; Dacrydiumites sp.; Dalbergia lucida; Daphne sp.; Davallia sp.; Deltoidospora sp.; Dennstaedtiaceae; Desmodium pulchellum; Desmos kaiyunanensis; Dicksonia sp.; Dicolpopollis kockelii; Diospyros sp.; Dipteris sp.; Distaltriangulisporites hubeiensis; Dodonaea japonica; DRILL; Drilling/drill rig; Echimonocolpites franciscoides; Echinatisporis sp.; Echinosporis sp.; Elaeagnus sp.; Engelhardtia sp.; Engelhardtioidites levis; Engelhardtioidites sp.; Ephedra sp.; Ephedripites sp.; Epoch; Equisetum sp.; Ericaceae; Ericaceoipollenites sp.; Ericipites sp.; Erythrophleum ovatifolium; Euphorbiaceae; Event label; Extrapunctatosporis megapunctos; Extrapunctatosporites sp.; Fagara sp.; Fagopyrum sp.; Faguspollenites sp.; Fagus sp.; Ficus sp.; Florschuetzia levipoli; Florschuetzia semilobata; Florschuetzia sp.; Florschuetzia trilobata; Fonestrites spinosus; Formation; Fossil determination; Fraxinus sp.; Fushan_Depression; Gentianaceae; Gentum sp.; Gesneriaceae; Gleditsia integra; Gleicheniidites sp.; Glyptostrobus sp.; Gothanipollis bassensis; Gramineae sp.; Graminidites media; Graminidites sp.; Graminites sp.; Guttiferae; Hamamelidaceae; Hamamelis sp.; Hemiptelea sp.; Heynea sp.; Hicriopteris sp.; Homalium sp.; Humulus sp.; Hydrocharis sp.; Hydrosporites levis; Hydrosporites sp.; Hymenophyllaceae; Hymenophyllum sp.; Hystrichosphaerideae; Ilexpollenites longipolliniata; Ilexpollenites margaritatus; Ilexpollenites membranous; Ilexpollenites sp.; Ilex sp.; Inaperturopollenites sp.; Indigofera praesuffruticosa; Jasminum paralanceolarium; Juglandaceae; Juglans japonica; Juglanspollenites sp.; Juglanspollenites verus; Juglans regia; Juglans sp.; Keteleeria sp.; Labiatae sp.; Laevigatosporites sp.; Laricoidites magnus; Laricoidites sp.; Larix sp.; Lauraceae; Laurus obovalis; Leguminosae sp.; Leiotriletes adriennis; Leiotriletes sp.; Leizhou_Peninsula; Lespedeza sp.; Liliaceae; Liliacidites sp.; Liliodendron sp.; Liquidambar brandonensis; Liquidambar mangelsdefianus; Liquidambarpollenites minutus; Liquidambarpollenites sp.; Liquidambarpollenites stigmosus; Liquidambar sp.; Lithocarpus sp.; Lithoearpus sp.; Litsea grabaui; Lonicerapollis gallwitzii; Lonicera sp.; Loxogrammaceae; Lühe; Lunpola_Basin; Lycopodiaceae; Lycopodium cernuum; Lycopodium sp.; Lycopodiumsporites sp.; Lygodioisporites sp.; Lygodium sp.; Lygodiumsporites sp.; Lythrum sp.; Macaranga sp.; Machilus americana; Machilus sp.; Machilus ugoana; Magnastriatites howardi; Magnolia miocenica; Magnolia sp.; Magnolipollis elongatus; Magnolipollis sp.; Mallotus sp.; Margcolporites sp.; Margocolporites vanwijhei; Markam; Meliaceae; Metasequoia sp.; Miaoli; Microfoveolatosporites sp.; Microlepia sp.; Momipites coryloides; Monocolpopollenites sp.; Monosulcites sp.; Moraceae; Myrica elliptica; Myrica longifolia; Myrica sp.; Myricipites sp.; Myriophyllum sp.; Myrtaceae; Myrtaceidites parvus; Myrtaceidites sp.; Namling; NECLIME; NECLIME_campaign; Neogene Climate Evolution in Eurasia; Neolitsea sp.; Ninghai; Nothaphoebe precavaleriei; Nothofagus sp.; Nuphar sp.; Nymphaeaceae; Nyssaceae; Nyssapollenites sp.; Oenothera sp.; Oleaceae; Onagraceae; Onychium sp.; Operculumpollis operculatus; Ophioglossum sp.; ORDINAL NUMBER; Ormosia xiaolongtanensis; Osmundacidites primarius; Osmundacidites sp.; Osmundacidites wellmanii; Osmunda sp.; Ostrya sp.; Ostryoipollenites rhenanus; Ostryoipollenites sp.; Ouercus sp.; Paleontological sampling; Palmae; PALSAMP; Parvisaccites sp.; Passiflora sp.; Peltandripites sp.; Perinomonoletes sp.; Perotriletes sp.; Perrottetia miocenica; Phelline sp.; Phoebe pseudolanceolata; Photinia sp.; Phragmites sp.; Phyllanthus sp.; Phyllostachys sp.; Piceaepollenites sp.; Picea sp.; Pinaceae; Pinuspollenites minutus; Pinuspollenites pristinipollinia; Pinuspollenites sp.; Pinuspollenites strobipites; Pinus sp.; Pithecellobium lucidum; Plagiogyria sp.; Plantaginaceae; Platanus sp.; Platycaryapollenites shandongensis; Platycarya sp.; Podocarpidites sp.; Podocarpus sp.; Podogonium oehningense; Podogonium sp.; Polygonaceae; Polygonum sp.; Polypodiaceae; Polypodiaceaesporites gracilis; Polypodiaceaesporites haardti; Polypodiaceaesporites megahaardti; Polypodiaceaesporites ovatus; Polypodiaceaesporites sp.; Polypodiaceaesporites wanglougangensis; Polypodiaceaesporties gracilis; Polypodiaceoisporites sp.; Polypodiisporites favus; Polypodiisporites perverrucatus; Polypodiisporites sp.; Polypodiisporites usmensis; Polypodium sp.; Polyporate pollen; Potamogetonaceae; Potamogeton sp.; Proteacidites mollis; Psilabrevitricolpites rotundus; Psilatricolporites operculatus; Psophosphaera sp.; Pteridaceae; Pteridaceoisporis sp.; Pteridium sp.; Pteris sp.; Pterium sp.; Pterocaryapollenites sp.; Pterocaryapollenites stellatus; Pterocarya sp.; Pterocystidiopsis sp.; Punica sp.; Quercoidites asper; Quercoidites henrici; Quercoidites microhenrici; Quercoidites minor; Quercoidites sp.; Quercus lantenoisii; Quercus namlingensis; Quercus prespathulata; Quercus sinomiocenica; Quercus sp.; Quercus wulongensis; Ranunculaceae; Retimultiporopollenites sp.; Retitricolpites sp.; Rhamnaceidites sp.; Rhapis sp.; Rhododendron namlingense; Rhododendron sanzugawaense; Rhoipites sp.; Rhus sp.; Ricinus sp.; Robinia nipponica; Rosa sp.; Rubiaceae; Rumex sp.; Rutaceae; Rutaceoipollenites sp.; Sagittaria sp.; Salixipollenites discoloripites; Salixipollenites hiatus; Salixipollenites sp.; Salix miosinica; Salix sp.; Salvinia sp.; Sample code/label; Sample comment; Sapindaceae; Sapodaceoidaepollenites kirchheimeri; Sapotaceae; Sapotaceoidaepollenites sp.; Schizaeoisporites sp.; Schizospora sp.; Scrophulariaceae; Sediment type; Selaginellaceae; Selaginella sp.;
    Type: Dataset
    Format: text/tab-separated-values, 1799 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Chinese Journal of Plant Ecology
    In:  EPIC3Chinese Journal of Plant Ecology, Chinese Journal of Plant Ecology, 47(10), pp. 1453-1463, ISSN: 1005-264X
    Publication Date: 2024-06-21
    Description: Fossil pollen and spore records provide highly creditable proxy data to investigate the past environmental changes such as palaeovegetation and palaeoclimate. Pollen database promotes past environmental studies from local to regional and global scales and from qualitative to quantitative reconstructions. This is of great significance on exploring the interactions among past vegetation, climates and anthropogenic disturbances at large spatial scale and long temporal scale, to better understand the evolution of the earth system. In this paper, a fossil pollen dataset of China is compiled, by synthesizing 372 original or digitized fossil pollen records including 790 pollen taxa in China’s land and ocean during the late-Quaternary (since 50 ka BP). The dataset includes site names, latitude, longitude and altitude, pollen data source, sample type, sediment length or span, sample number of each site, dating method and dating number, age span and reference, as well as the fossil pollen percentage of each sampling site. The pollen data, mostly published from late 1980s to present, are concentrated in vegetation regions of temperate and subtropical forests, temperate grasslands, temperate deserts and alpine vegetation on the Qingzang Plateau. Sample sites are distributed at different altitudes from deep sea to high Qingzang Plateau, but the majority of the sites are located between 0–2 000 m. The dataset comprises of 178 raw pollen records (47.8%) and 194 digitized pollen records (52.2%). Pollen samples are mainly from lake sediment (151 sites), alluvial/fluvial sediment (99 sites), and peat (67 sites), accounting for 85.2% of the total sampling sites. Radiocarbon is the main dating method that accounts for 93.8% of total samples, and most of the sites have 2–10 radiocarbon dating data. Each site has an average number of pollen taxa of 19, with the most sites having 4–30 pollen taxa. The temporal and spatial distribution of representative pollen taxa (Pinus, Quercus, Artemisia and Poaceae) reveals increasing trends both in their distributional range and pollen concentration from the last glacial maximum to Holocene, but such trends have various regional patterns in different parts of China. This fossil pollen dataset is a fruitful work of collection of pollen records in most territory of China that conducted by palynologists from China and overseas during the last half century. It consolidates the valuable and fundamental data that can be potentially utilized to explore the evolution of past environments and their driving mechanism of climate change and human disturbance.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2015-03-25
    Description: This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway. Scientific Reports 5 doi: 10.1038/srep09437
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...