ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 423-425 (May 2003), p. 687-692 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 492-493 (Aug. 2005), p. 495-500 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The functionally graded thermal barrier coating (TBC) serves in high temperature and/or high temperature gradient environment for a long time. According to the experimental and theoretical research, in the metal substrate and the metal-rich interlayer creep deformation will appear under high temperature environment. In order to design and optimize the compositional distribution of FGM, it is necessary to analyze the stress and strain responses taking into account the creep phenomenon of the materials. In this article, the thermo-mechanical responses of ceramic/metal functionally graded TBC in work environment are analyzed by a finite element method. The creep phenomenon of the metal and the interlayers are taken into account. The numerical results indicate that the creep behavior of all interlayers, even for the ceramic-rich interlayer, cannot be neglected in analysis. It is suggested that the creep phenomenon of the material is important in the functionally graded TBC systems
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 492-493 (Aug. 2005), p. 385-390 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fracture of the functionally graded thermal barrier coating (TBC) under the thermal loads is a key for the engineering application of this kind of materials. In the previous studies, the functionally graded TBC is usually simplified into a laminate by homogenizing the material of each interlayer as an isotropic layer. Nevertheless, this method is a macro equivalent method, which neglected the microstructure characteristics of materials. In this paper, the computational micromechanics method (CMM) is employed to study the fracture problem of the functionally graded TBC with the interface crack. Essentially, CMM is a finite element analytical method based on the real microstructure of materials, which combines the digital image processing technique, the auto mesh generation technique with the finite element method. Firstly, the microstructure photos of the functionally graded TBC are required. Secondly, the digital image processing technique and the auto mesh generation technique are used to construct the finite element model. Finally, the finite element method is utilized for the fracture analysis of the functionally graded TBC under the thermal shock loads. Moreover, the problem is also analyzed using the macro equivalent method and the results from the two methods are compared. The temperature field obtained using CMM is basically consistent with the one obtained from the macro equivalent method and the influences of the interface crack on the temperature fields are limited in a local region. But results of the driving forces for the crack propagation, J-integrals, from the two methods are quite different. Comparing with the CMM results, J-integrals from the macro equivalent method are smaller. It means that the macro equivalent method tends to underestimate the driving force of the interface crack. On the other hand, the prediction of the critical location of the interface crack from the two methods is also different. Since the influence of the microstructure is taken into account by CMM, results of the present work may suggest that CMM is a more useful and accuracy method for the fracture analysis of the functionally graded TBC
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...