ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-10
    Description: It is acknowledged that the aviation and aerospace industries are primary forces influencing the industrial development and economic well being of the United States and many countries around the world. For decades the US national air transportation system has been the model of success - safely and efficiently moving people, cargo, goods and services and generating countless benefits throughout the global community; however, the finite nature of the system and many of its components is becoming apparent. Without measurable increases in the capacity of the national air transportation system, delays and service delivery failures will eventually become intolerable. Although the recent economic slowdown has lowered immediate travel demands, that trend is reversing and cargo movement remains high. Research data indicates a conservative 2.5-3.0% annual increase in aircraft operations nationwide through 2017. Such growth will place additional strains upon a system already experiencing capacity constraints. The stakeholders of the system will continue to endure ever-increasing delays and abide lesser levels of service to many lower population density areas of the country unless more efficient uses of existing and new transportation resources are implemented. NASA s Small Aircraft Transportation System program (SATS) is one of several technologies under development that are aimed at using such resources more effectively. As part of this development effort, this report is the first in a series outlining the findings and recommendations resulting from a comprehensive program of multi-level analyses and system engineering efforts undertaken by NASA Langley Research Center s Systems Analysis Branch (SAB). These efforts are guided by a commitment to provide systems-level analysis support for the SATS program. Subsequent efforts will build upon this early work to produce additional analyses and benefits studies needed to provide the technical and economic basis for national investment and policy decisions related to further development and potential deployment of a small aircraft transportation system. This report primarily serves two purposes. First, it presents results attained from an initial evaluation and analysis of the Higher Volume Operations (HVO) and EnRoute Operations (ERO) concepts - both designated operational capabilities within the SATS Program s Concept of Operations (CONOPS) document. It further outlines areas of the concepts that would benefit from follow-on analyses and system engineering efforts. It is intended that these processes will aid continued maturation of the concepts and promote additional studies of their effects and influences in combination with other designated CONOPS currently under development. In essence, it establishes a baseline of data upon which subsequent analyses and studies can be built and identifies performance characteristics the concept must exhibit in order to provide, at minimum, levels of safety and usage equal to or better than the current system.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2003-212170 , NAS 1.26:212170
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2002-211927 , NAS 1.16:211927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The air transportation system is a key part of the U.S. and global economic infrastructure. In recent years, this system, by any measure of usage - operations, enplanements, or revenue passenger miles (RPMs) - has grown rapidly. The rapid growth in demand has not been matched; however, by commensurate increases in the ability of airports and the airspace system to handle the additional traffic. As a result, the air transportation system is approaching capacity and airlines will face excessive delays or significant constraints on service unless capacity is expanded. To expand capacity, the air traffic management system must be improved. To improve the air traffic management system, the National Aeronautics and Space Administration (NASA) Aerospace Technology Enterprise developed the strategic goal of tripling air traffic throughput over the next 10 years, in all weather conditions, while at least maintaining current safety standards. As the first step in meeting that goal, the NASA Intercenter Systems Analysis Team (ISAT) is evaluating the contribution of existing programs to meet that goal. A major part of the study is an examination of the ability of the National Airspace System (NAS) to meet the predicted growth in travel demand and the potential benefits of technology infusion to expand NAS capacity. We previously analyzed the effects of the addition of two technology elements - Terminal Area Productivity (TAP) and Advanced Air Transportation Technologies (AATT). The next program we must analyze is not specific to airspace or aircraft technology. The program incorporates a fundamentally different vehicle to improve throughput: the civil tilt rotor (CTR). The CTR has the unique operating characteristic of being able to take off and land like a rotorcraft (vertical take off and landing, or VTOL, capability) but cruises like a traditional fixed-wing aircraft. The CTR also can operate in a short take off and landing (STOL) mode; generally, with a greater payload capacity (i.e., more passengers) than when operating in the VTOL mode. CTR could expand access to major airports without interfering with fixed-wing aircraft operating on congested runways and it could add service to new markets without the infrastructure support needed for fixed-wing aircraft. During FY 1999, we preliminarily assessed the feasibility of operating CTRs at two major U.S. airports as part of the annual review of NASA aerospace goals by the ISAT. This current study expands the analysis and concepts of that study to the complete NAS to quantify the national throughput effects of the CTR.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2001-211055 , NAS 1.26:211055 , LMI-NS003S1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.
    Keywords: Aerodynamics
    Type: NASA/CR-2004-212998
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2001-210874 , NAS 1.26:210874 , LMI-NS004S1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.
    Keywords: Quality Assurance and Reliability
    Type: E-16-P77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2001-211022 , NAS 1.26:211022 , LMI-NS010S1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: LMINET is a queuing network air traffic simulation model implemented at 64 large airports and the entire National Airspace System in the United States. TAAM and SIMMOD are two widely used air traffic event-driven simulation models mostly for airports. Based on our proposed Progressive Augmented window approach, TAAM and SIMMOD are integrated with LMINET though flight schedules. In the integration, the flight schedules are modified through the flight delays reported by the other models. The benefit to the local simulation study is to let TAAM or SIMMOD take the modified schedule from LMINET, which takes into account of the air traffic congestion and flight delays at the national network level. We demonstrate the value of the integrated models by the case studies at Chicago O'Hare International Airport and Washington Dulles International Airport. Details of the integration are reported and future work for a full-blown integration is identified.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-2001-210875 , NAS 1.26:210875 , LMI-NS008S1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2002-211961 , NAS 1.26:211961 , LMI-NA104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: NASA tasked LMI to assess the potential contributions of a yet-undeveloped Civil Tiltrotor aircraft (CTR) in improving capacity in the National Airspace System in all weather conditions. The CTRs studied have assumed operating parameters beyond current CTR capabilities. LMI analyzed CTRs three ways: in fast-time terminal area modeling simulations of New York and Washington to determine delay and throughput impacts; in the Integrated Noise Model, to determine local environmental impact; and with an economic model, to determine the price viability of a CTR. The fast-time models encompassed a 250 nmi range and included traffic interactions from local airports. Both the fast-time simulation and the noise model assessed impacts from traffic levels projected for 1999, 2007, and 2017. Results: CTRs can reduce terminal area delays due to concrete congestion in all time frames. The maximum effect, the ratio of CTRs to jets and turboprop aircraft at a subject airport should be optimized. The economic model considered US traffic only and forecasted CTR sales beginning in 2010.
    Keywords: Research and Support Facilities (Air)
    Type: NASA/CR-2001-210659 , LMI-NS904S2 , NAS 1.26:210659
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...