ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2014-12-12
    Description: As the Earth's inhomogeneous and viscoelastic properties, seismic signal attenuation we are trying to mitigate is a long-standing problem facing with high-resolution techniques. For addressing such a problem in the fields of time–frequency transform, Gabor transform methods such as atom-window method (AWM) and molecular window method (MWM) have been reported recently. However, we observed that these methods might be much better if we partition the non-stationary seismic data into adaptive stationary segments based on the amplitude and frequency information of the seismic signal. In this study, we present a new method called amplitude-frequency partition (AFP) to implement this process in the time–frequency domain. Cases of a synthetic and field seismic data indicated that the AFP method could partition the non-stationary seismic data into stationary segments approximately, and significantly, a high-resolution result would be achieved by combining the AFP method with conventional spectral-whitening method, which could be considered superior to previous resolution-enhancement methods like time-variant spectral whitening method, the AWM and the MWM as well. This AFP method presented in this study would be an effective resolution-enhancement tool for the non-stationary seismic data in the fields of an adaptive time–frequency transform.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...