ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1987-05-01
    Description: The initiation and regulation of fibrinolysis has been studied by reconstitution of fibrinolytic activity in human plasma in vitro. Depletion of tissue plasminogen activator (tPA) antigen by immunoadsorption of human plasma with anti-tPA Ig Sepharose 4B leads to total loss of spontaneous fibrinolytic activity determined by lysis of a thrombin-induced clot. Addition of physiological concentrations of purified tPA to tPA-depleted plasma restores fibrinolytic activity as a function of the length of time between tPA addition and clotting. Addition of free tPA to tPA-depleted plasma followed by immediate clotting results in a high rate of fibrinolysis. In contrast, when free tPA is allowed to incubate in plasma for 10 to 60 minutes prior to clot formation, the fibrinolytic activity of tPA is gradually lost. The loss of tPA-induced fibrinolytic activity in unclotted plasma is accompanied by decreased partitioning of tPA antigen into fibrin after clotting and is kinetically correlated with the formation of a 100 kilodalton (kDa) tPA complex as demonstrated by SDS-gel electrophoresis and fibrin-agar zymography. These results suggest that free tPA is susceptible to complexation by the plasma inhibitor in the absence of a clot. Fibrin formation renders tPA relatively inaccessible to inhibition. The tPA antigen isolated from stored plasma consists mainly of 100 kDa activity in SDS-gel electrophoresis and zymography, indicating that the tPA complex is resistant to dissociation by SDS. Upon rezymography of the sliced gel, only a 60 kDa tPA activity is found, suggesting that the activity at 100 kDa is at least partly due to free tPA dissociated from the complex during the first zymography. Conversion of tPA complex to enzymatically active free tPA also occurs with brief SDS exposure followed by incubation in the presence of excess Triton X-100 or by hydroxylamine treatment. These results reconcile the apparent discrepancy of the 100 kDA inhibitor-tPA complex manifesting plasminogen activation activity during zymography. The plasma tPA- inhibitor complex is precipitated strongly by antisera against plasminogen activator inhibitors (PAIs) of human Hep G2 hepatoma and HT- 1080 fibrosarcoma cells and weakly by antiserum against bovine aortic endothelial cell PAI but not by antiserum against a placental PAI (PAI- 2) suggesting that the plasma inhibitor is immunologically related to Hep G2, HT-1080 and possibly endothedial cell PAIs. Based on the above findings, a simple model for the initiation and regulation of plasma fibrinolysis at the PA level has been formulated.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-05-01
    Description: A two-site immunoradiometric assay for tissue plasminogen activator (tPA) antigen has been developed using immunoaffinity purified antibody. Various treatments enhanced the detection of tPA antigen in the plasma samples. Maximum detection was obtained by acidification of plasma to pH 4.8 to 6.5 or addition of 0.5 mol/L of L-lysine or L- arginine. Acidification or addition of lysine to plasma is also required for maximum immunoadsorption of plasma tPA antigen on anti-tPA- Ig-sepharose. These results indicate that plasma tPA antigen is partially cryptic to antibody in untreated plasma. The plasma tPA antigen isolated by immunoadsorption of either untreated plasma or acidified plasma on anti-tPA-Ig-sepharose consists mainly of a 100-kd plasminogen activator species as determined by fibrin-agar zymography. The 100-kd activity is possibly a tPA:inhibitor complex. A standardized sample preparation method was conveniently adopted by mixing 3 vol of plasma and 1 vol of 2 mol/L of L-lysine for the assay. Reconstitution and recovery studies showed that the method is specific and permits full detection of both free tPA and tPA:inhibitor complex. The validity of the assay is further supported by the finding that the spontaneous plasma fibrinolysis previously demonstrated to be dependent on plasma tPA antigen is correlated with tPA antigen content. Using the standardized assay, we found that tPA antigen concentrations in 16 blood bank plasmas are equivalent to 3.7 to 20 ng of 60 kd tPA/mL. In all the plasma tested, more than half of the antigen is undetected unless the plasma is treated as described above.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-03-15
    Description: Activation of factor X by both the unactivated tissue factor:factor VII complex (TF:VII) and the activated tissue factor:factor VIIa complex (TF:VIIa) has been studied in the presence of tissue factor pathway inhibitor (TFPI), antithrombin III (ATIII), and heparin. At near-plasma concentrations of TFPI, ATIII, and factor X, factor X activation that occurs in response to TF:VII is essentially abolished in the presence of heparin (0.5 micromol/L). This effect requires both inhibitors, acting on different targets: (1) ATIII, which in the presence of heparin blocks the activation of TF:VII, and (2) TFPI, which inhibits the TF:VIIa that is generated. In the absence of ATIII, TFPI alone with heparin reduces but does not abolish factor X activation. Conversely, in the absence of TFPI, ATIII + heparin reduces but does not abolish TF:VIIa generation and allows continuing activation of factor X. These results indicated that when the unactivated TF:VII complex is the initiating stimulus, heparin-dependent reduction in the rate and extent of factor X activation requires both ATIII and TFPI. In contrast, if TF:VIIa is used to initiate activation, only TFPI is involved in its regulation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-07-15
    Description: The lipoprotein-associated coagulation inhibitor (LACI) is present in vivo in at least three different pools: sequestered in platelets, associated with plasma lipoproteins, and released into plasma by intravenous heparin, possibly from vascular endothelium. In this study we have purified the heparin-relesable form of LACI from post-heparin plasma and show that it is structurally different from lipoprotein LACI. The purification scheme uses heparin-agarose chromatography, immunoaffinity chromatography, and size-exclusion chromatography and results in a 185,000-fold purification with a 33% yield. Heparin- releasable LACI (HRL), as analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis, under reducing conditions, appears as a major band at 40 Kd and a minor band at 36 Kd. Immunoblot analysis suggests that the 36-Kd band arises from carboxyl-terminus proteolysis that occurs during the purification. HRL has a specific activity similar to that of HepG2 or lipoprotein LACI. HRL and lipoprotein LACI combine with lipoproteins in vitro while purified HepG2 LACI does not. I125-labeled HRL, injected into a rabbit, is cleared more slowly than I125-labeled HepG2 LACI, which may be due to attachment to lipoproteins in vivo. Preliminary evidence suggests that HRL is associated with vascular endothelium, possibly by attachment to glycosaminoglycans.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-07-15
    Description: The lipoprotein-associated coagulation inhibitor (LACI) is present in vivo in at least three different pools: sequestered in platelets, associated with plasma lipoproteins, and released into plasma by intravenous heparin, possibly from vascular endothelium. In this study we have purified the heparin-relesable form of LACI from post-heparin plasma and show that it is structurally different from lipoprotein LACI. The purification scheme uses heparin-agarose chromatography, immunoaffinity chromatography, and size-exclusion chromatography and results in a 185,000-fold purification with a 33% yield. Heparin- releasable LACI (HRL), as analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis, under reducing conditions, appears as a major band at 40 Kd and a minor band at 36 Kd. Immunoblot analysis suggests that the 36-Kd band arises from carboxyl-terminus proteolysis that occurs during the purification. HRL has a specific activity similar to that of HepG2 or lipoprotein LACI. HRL and lipoprotein LACI combine with lipoproteins in vitro while purified HepG2 LACI does not. I125-labeled HRL, injected into a rabbit, is cleared more slowly than I125-labeled HepG2 LACI, which may be due to attachment to lipoproteins in vivo. Preliminary evidence suggests that HRL is associated with vascular endothelium, possibly by attachment to glycosaminoglycans.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-01-15
    Description: Lipoprotein-associated coagulation inhibitor (LACI) is a plasma-derived protein that inhibits tissue factor (TF)/factor VIIa-induced coagulation in a factor Xa-dependent manner. The roles of endogenous plasma LACI and exogenously added LACI and heparin, in the regulation of coagulation, initiated via the intrinsic and extrinsic pathways, were studied using the activated partial thromboplastin time (APTT) and the modified prothrombin time (PT) assays, respectively. Both LACI- depleted plasma and normal plasma have identical APTTs and similar prolongations of the APTT in response to heparin; both are fully anticoagulated (arbitrarily defined as clotting times of greater than 1 hour) at similar concentrations of heparin. These results indicate that heparin is an effective anticoagulant when coagulation is initiated by the intrinsic pathway and that endogenous LACI is not significantly involved in the regulation of this pathway. The PT of normal plasma is only marginally longer than that of LACI-depleted plasma in the absence of heparin, suggesting that endogenous plasma LACI has a very limited capacity to inhibit TF-induced clotting. However, in the presence of heparin, the PTs of LACI-depleted plasma and normal plasma are different. Prolongation of the PT occurred only moderately and linearly with increasing concentrations of heparin in LACI-depleted plasma. In contrast, normal plasma showed a greater extent of PT prolongation in response to heparin and the plasma became fully anticoagulated at a certain threshold concentration of heparin. These results suggest that LACI serves as a cofactor for heparin and thus greatly enhances the inhibition of TF-induced coagulation. LACI-depleted plasma was supplemented with purified recombinant LACI and/or heparin and the effects on TF-induced clotting were studied. A combination of LACI and heparin greatly enhanced anticoagulation compared with LACI or heparin alone. Many sulfated polysaccharides were also found to enhance the LACI-dependent inhibition of TF-induced clotting. By weight, the relative potencies of these compounds are: low molecular weight heparin (mean Mr, 5,100) greater than unfractionated heparin greater than low molecular weight heparin (mean Mr, 3,700) greater than pentosan polysulfate greater than dermatan sulfate greater than dextran sulfate greater than heparan sulfate. Based on the above results, it is concluded that LACI is a cofactor for heparin in the inhibition of TF- induced clotting and that LACI and sulfated polysaccharides act synergistically in whole plasma.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-04-01
    Description: Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type inhibitor that directly inhibits factor Xa and, in a factor Xa- dependent fashion, also inhibits the factor VIIa/tissue factor (TF) catalytic complex. The Kunitz-2 domain in TFPI is needed for the binding and inhibition of factor Xa, while the Kunitz-1 domain appears to be responsible for binding factor VIIa in a quaternary factor Xa- TFPI-factor VIIa/TF inhibitory complex. Human leukocyte elastase (HLE) proteolytically cleaves TFPI between threonine-87 and threonine-88 within the polypeptide that links the Kunitz-1 and Kunitz-2 domains in the TFPI molecule. HLE treatment not only affects the ability of TFPI to inhibit factor VIIa/TF, but also dramatically reduces its inhibition of factor Xa. Both purified HLE and stimulated neutrophils regenerate TF activity from a preformed factor Xa-TFPI-factor VIIa/TF inhibitory complex. Kinetic analysis suggests that HLE cleavage does not effect the affinity of the initial encounter interaction between factor Xa and TFPI, whereas it markedly reduces the affinity of the final factor Xa:TFPI complex with Ki (final) values for untreated and HLE-treated TFPI of 58 pmol/L and 4.4 nmol/L, respectively. Thus, an epitope in the amino-terminal region of TFPI or a conformation of the TFPI molecule that requires the presence of this region is needed in concert with the Kunitz-2 domain to produce optimal inhibition of factor Xa by TFPI.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-04-15
    Description: Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type protease inhibitor that binds to and inactivates factor Xa directly, and in a factor Xa-dependent fashion inhibits the factor VIIa/tissue factor catalytic complex. TFPI is a slow, tight-binding, competitive, and reversible inhibitor of factor Xa, in which the formation of an initial encounter complex between TFPI and factor Xa is followed by slow isomerization to a final, tightened complex. Wild-type recombinant TFPI (rTFPI), expressed in mouse C127 cells, separates into two forms on heparin-agarose chromatography that elute at 0.3 mol/L and 0.6 mol/L NaCl. Western blot analysis shows that both forms contain the N- terminus of full-length TFPI, but only rTFPI(0.6) is recognized by an antibody directed against the C-terminus. rTFPI(0.3) and rTFPI(0.6) inhibit factor Xa with 1:1 stoichiometry and inhibit factor VIIa/tissue factor equally in an endpoint-type assay. However, rTFPI(0.6) is a more potent inhibitor than rTFPI(0.3) of coagulation in normal plasma induced by either factor Xa or tissue factor. The initial inhibition of factor Xa (less than 5 seconds) produced by rTFPI(0.6) is several-fold greater than that produced by rTFPI(0.3), presumably reflecting a lower Ki of the immediate encounter complex between factor Xa and TFPI. The differential effect of these forms of TFPI on tissue factor-induced coagulation in normal plasma appears to be directly related to their ability to inhibit factor Xa. To confirm the role of the C-terminal region of TFPI in optimal factor Xa inhibition, a carboxy-terminal mutant of rTFPI, which is truncated after leucine 252 and thus lacks the basic sequence K T K R K R K K Q R V K (residues 254–265), was expressed in C127 cells. This form of rTFPI elutes from heparin-agarose at 0.28 mol/L NaCl and inhibits factor Xa at a rate that is slower than rTFPI(0.3). The Ki(final)s for factor Xa inhibition by rTFPI(0.6), rTFPI(0.3), and rTFPI1–252 are 3.1 +/- 0.6, 19.6 +/- 0.8, and 19.6 +/- 3.0 pmol/L, respectively.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-05-01
    Description: A two-site immunoradiometric assay for tissue plasminogen activator (tPA) antigen has been developed using immunoaffinity purified antibody. Various treatments enhanced the detection of tPA antigen in the plasma samples. Maximum detection was obtained by acidification of plasma to pH 4.8 to 6.5 or addition of 0.5 mol/L of L-lysine or L- arginine. Acidification or addition of lysine to plasma is also required for maximum immunoadsorption of plasma tPA antigen on anti-tPA- Ig-sepharose. These results indicate that plasma tPA antigen is partially cryptic to antibody in untreated plasma. The plasma tPA antigen isolated by immunoadsorption of either untreated plasma or acidified plasma on anti-tPA-Ig-sepharose consists mainly of a 100-kd plasminogen activator species as determined by fibrin-agar zymography. The 100-kd activity is possibly a tPA:inhibitor complex. A standardized sample preparation method was conveniently adopted by mixing 3 vol of plasma and 1 vol of 2 mol/L of L-lysine for the assay. Reconstitution and recovery studies showed that the method is specific and permits full detection of both free tPA and tPA:inhibitor complex. The validity of the assay is further supported by the finding that the spontaneous plasma fibrinolysis previously demonstrated to be dependent on plasma tPA antigen is correlated with tPA antigen content. Using the standardized assay, we found that tPA antigen concentrations in 16 blood bank plasmas are equivalent to 3.7 to 20 ng of 60 kd tPA/mL. In all the plasma tested, more than half of the antigen is undetected unless the plasma is treated as described above.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-10-15
    Description: Lipoprotein-associated coagulation inhibitor produces feed-back inhibition of tissue factor (tissue thromboplastin)-induced coagulation in the presence of factor Xa Recombinant lipoprotein-associated coagulation inhibitor (rLACI) was tested for its ability to modify thromboplastin-induced intravascular coagulation in a rabbit model that allows monitoring of iodine-125 fibrin accumulation/disappearance in the lung and sampling of blood for the measurement of coagulation parameters. Infusion of thromboplastin into the rabbit caused a rapid increase of radioactivity over the lungs, possibly due to the accumulation of 125I fibrin in the lungs, followed by a rapid decline of radioactivity, suggestive of removal of fibrin from the lungs. Thromboplastin also caused a rapid decrease of systemic fibrinogen that was accompanied by a lengthening of the activated partial thromboplastin time and prothrombin time. The effect of coinfusion of rLACI with thromboplastin or bolus injection of rLACI before thromboplastin infusion was studied. At a high dose of rLACI (800 micrograms/kg body weight), the thromboplastin-induced radioactivity increase in the lungs and the systemic fibrinogen decrease were completely suppressed. The activated partial thromboplastin time and prothrombin time of the plasma samples lengthened, possibly due to the presence of thromboplastin in circulation. The thromboplastin-induced radioactivity increase over the lungs was not completely suppressed by lower doses of rLACI (135 to 270 micrograms/kg body weight), but these doses of rLACI prevented systemic fibrinogen decrease. At a bolus dose of 23 micrograms/kg body weight, rLACI provided 50% protection of the fibrinogen consumption (fibrinogen decreased to 82% compared with 65% in rabbits treated with thromboplastin alone). These results show that rLACI is effective in the inhibition of thromboplastin-induced coagulation in vivo.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...