ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉Chlorite is a key mineral in the control of reservoir quality in many siliciclastic rocks. In deeply buried reservoirs, chlorite coats on sand grains prevent the growth of quartz cements and lead to anomalously good reservoir quality. By contrast, an excess of chlorite – for example, in clay-rich siltstone and sandstone – leads to blocked pore throats and very low permeability. Determining which compositional type is present, how it occurs spatially, and quantifying the many and varied habits of chlorite that are of commercial importance remains a challenge. With the advent of automated techniques based on scanning electron microscopy (SEM), it is possible to provide instant phase identification and mapping of entire thin sections of rock. The resulting quantitative mineralogy and rock fabric data can be compared with well logs and core analysis data. We present here a completely novel Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN®) SEM–energy-dispersive spectrometry (EDS) methodology to differentiate, quantify and image 11 different compositional types of chlorite based on Fe : Mg ratios using thin sections of rocks and grain mounts of cuttings or loose sediment. No other analytical technique, or combination of techniques, is capable of easily quantifying and imaging different compositional types of chlorite. Here we present examples of chlorite from seven different geological settings analysed using QEMSCAN® SEM–EDS. By illustrating the reliability of identification under automated analysis, and the ability to capture realistic textures in a fully digital format, we can clearly visualize the various forms of chlorite. This new approach has led to the creation of a digital chlorite library, in which we have co-registered optical and SEM-based images, and validated the mineral identification with complimentary techniques such as X-ray diffraction. This new methodology will be of interest and use to all those concerned with the identification and formation of chlorite in sandstones and the effects that diagenetic chlorite growth may have had on reservoir quality. The same approach may be adopted for other minerals (e.g. carbonates) with major element compositional variability that may influence the porosity and permeability of sandstone reservoirs.〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-21
    Description: Chlorite is a key mineral in the control of reservoir quality in many siliciclastic rocks. In deeply buried reservoirs, chlorite coats on sand grains prevent the growth of quartz cements and lead to anomalously good reservoir quality. By contrast, an excess of chlorite – for example, in clay-rich siltstone and sandstone – leads to blocked pore throats and very low permeability. Determining which compositional type is present, how it occurs spatially, and quantifying the many and varied habits of chlorite that are of commercial importance remains a challenge. With the advent of automated techniques based on scanning electron microscopy (SEM), it is possible to provide instant phase identification and mapping of entire thin sections of rock. The resulting quantitative mineralogy and rock fabric data can be compared with well logs and core analysis data. We present here a completely novel Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN®) SEM–energy-dispersive spectrometry (EDS) methodology to differentiate, quantify and image 11 different compositional types of chlorite based on Fe : Mg ratios using thin sections of rocks and grain mounts of cuttings or loose sediment. No other analytical technique, or combination of techniques, is capable of easily quantifying and imaging different compositional types of chlorite. Here we present examples of chlorite from seven different geological settings analysed using QEMSCAN® SEM–EDS. By illustrating the reliability of identification under automated analysis, and the ability to capture realistic textures in a fully digital format, we can clearly visualize the various forms of chlorite. This new approach has led to the creation of a digital chlorite library, in which we have co-registered optical and SEM-based images, and validated the mineral identification with complimentary techniques such as X-ray diffraction. This new methodology will be of interest and use to all those concerned with the identification and formation of chlorite in sandstones and the effects that diagenetic chlorite growth may have had on reservoir quality. The same approach may be adopted for other minerals (e.g. carbonates) with major element compositional variability that may influence the porosity and permeability of sandstone reservoirs.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...