ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dwarf mistletoe (Arceuthobium spp.) is a hemiparasite that is said to be the single-most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and carbon relations were characterized over a range of scale from leaf to whole tree in large (40- to 50-m-tall) individuals of western hemlock (Tsuga heterophylla (Raf.) Sarg.) that were either heavily infected, or uninfected with hemlock dwarf mistletoe (Arceuthobium tsugense). Specific hydraulic conductivity (ks) of infected branches was approximately half that of uninfected branches, yet leaf-specific conductivity (kL) was similar because leaf area : sapwood area ratios (AL : AS) of infected branches were lower. Pre-dawn and minimum leaf water potential and stomatal conductance (gs) were similar among infected and uninfected trees because adjustments in hydraulic architecture of infected trees maintained kL despite reduced ks. Maximum whole-tree water use was substantially lower in infected trees (approximately 55 kg d−1) than in uninfected trees (approximately 90 kg d−1) because reduced numbers of live branches in infected trees reduced whole-tree AL : AS in a manner consistent with that observed in infected branches. Maximum photosynthetic rates of heavily infected trees were approximately half those of uninfected trees. Correspondingly, leaf nitrogen content was 35% lower in infected trees. Foliar δ13C values were 2.8‰ more negative in infected than in uninfected individuals, consistent with the absence of stomatal adjustment to diminished photosynthetic capacity. Adjustments in hydraulic architecture of infected trees thus contributed to homeostasis of water transport efficiency and transpiration on a leaf area basis, whereas both carbon accumulation and photosynthetic water use efficiency were sharply reduced at both the leaf and whole-tree scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The gravitational component of water potential contributes a standing 0.01 MPa m−1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height-dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas-fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25-year-old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old-growth (approximately 450-year-old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: G × E interaction ; Managed environments ; Target-environments ; Selection Indirect selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Selection for grain yield among wheat lines is complicated by large line-by-environment (L × E) interactions in Queensland, Australia. Early generation selection is based on an evaluation of many lines in a few environments. The small sample of environments, together with the large L × E interaction, reduces the realised response to selection. Definition of a series of managed-environments which provides discrimination among lines, which is relevant to the target production-environments, and can be repeated over years, would facilitate early generation selection. Two series of managed-environments were conducted. Eighteen managed-environments were generated in Series-1 by manipulating nitrogen and water availability, together with the sowing date, at three locations. Nine managed-environments based on those from Series-1 were generated in Series-2. Line discrimination for grain yield in the managed-environments was compared to that in a series of 16 random production-environments. The genetic correlation between line discrimination in the managed-environments and that in the production-environments was influenced by the number and combination of managed-environments. Two managed-environment selection regimes, which gave a high genetic correlation in both Series-1 and 2, were identified. The first used three managed-environments, a high input (low water and nitrogen stress) environment with early sowing at three locations. The second used six managed-environments, a combination of a high input (low water and nitrogen stress) and medium input (water and nitrogen stress) with early sowing at three locations. The opportunities for using managed-environments to provide more reliable selection among lines in the Queensland wheat breeding programme and its potential limitations are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-11
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-21
    Description: Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g –1 for soluble sugars, 6–533 (mean = 94) mg g –1 for starch and 53–649 (mean = 153) mg g –1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R 2 = 0.05–0.12 for soluble sugars, 0.10–0.33 for starch and 0.01–0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g –1 for total NSC, compared with the range of laboratory estimates of 596 mg g –1 . Laboratories were reasonably consistent in their ranks of estimates among tissues for starch ( r = 0.41–0.91), but less so for total NSC ( r = 0.45–0.84) and soluble sugars ( r = 0.11–0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-04
    Description: First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two populations from sites with contrasting precipitation and temperature regimes east (PIPO dry ) and west (PIPO mesic ) of the Oregon Cascade mountains were sown in a common garden experiment and grown under two water availability treatments (control and drought). Aboveground biomass accumulation, vegetative phenology, xylem anatomy, plant hydraulic architecture, foliar stable carbon isotope ratios ( 13 C), gas exchange and leaf water relations characteristics were measured. No treatment or population-related differences in leaf water potential were detected. At the end of the first growing season, aboveground biomass was 74 and 44% greater in PIPO mesic in the control and drought treatments, respectively. By early October, 73% of PIPO dry seedlings had formed dormant buds compared with only 15% of PIPO mesic seedlings. Stem theoretical specific conductivity, calculated from tracheid dimensions and packing density, declined from June through September and was nearly twice as high in PIPO mesic during most of the growing season, consistent with measured values of specific conductivity. Intrinsic water-use efficiency based on 13 C values was higher in PIPO dry seedlings for both treatments across all sampling dates. There was a negative relationship between values of 13 C and leaf-specific hydraulic conductivity across populations and treatments, consistent with greater stomatal constraints on gas exchange with declining seedling hydraulic capacity. Integrated growing season assimilation and stomatal conductance estimated from foliar 13 C values and photosynthetic CO 2 -response curves were 6 and 28% lower, respectively, in PIPO dry seedlings. Leaf water potential at the turgor loss point was 0.33 MPa more negative in PIPO dry , independent of treatment. Overall, PIPO dry seedlings exhibited more conservative behavior, suggesting reduced growth is traded off for increased resistance to drought and extreme temperatures.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-23
    Description: Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought-related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored non-structural C compounds as indicators of a tree's current demands for photosynthate. Much of the uncertainty surrounding this issue could be resolved by developing a better understanding of the potential functions of non-structural C stored within trees. In addition to functioning as a buffer to reconcile temporal asynchrony between C demand and supply, the storage of non-structural C compounds may be under greater regulation than commonly recognized. We propose that in the face of environmental stochasticity, large, long-lived trees may require larger C investments in storage pools as safety margins than previously recognized, and that an important function of these pools may be to maintain hydraulic transport, particularly during episodes of severe stress. If so, survival and long-term growth in trees remain a function of C availability. Given that drought, freeze–thaw events and increasing tree height all impose additional constraints on vascular transport, the common trend of an increase in non-structural carbohydrate concentrations with tree size, drought or cold is consistent with our hypothesis. If the regulated maintenance of relatively large constitutive stored C pools in trees serves to maintain hydraulic integrity, then the minimum thresholds are expected to vary depending on the specific tissues, species, environment, growth form and habit. Much research is needed to elucidate the extent to which allocation of C to storage in trees is a passive vs. an active process, the specific functions of stored C pools, and the factors that drive active C allocation to storage.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-28
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-25
    Description: Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water stress affects phloem transport in trees, both in terms of the short-term impacts of water stress on phloem sap composition and the longer-term impacts on sieve cell anatomical characteristics. Phloem sieve cell conductivity ( k p ) was evaluated along a gradient of tree height and xylem water potential in Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) trees in order to evaluate the influence of water stress on phloem transport capacity. The Hagen–Poiseuille equation was used with measurements of sieve cell anatomical characteristics, water content of phloem sap, non-structural carbohydrate content of phloem sap and shoot water potential ( l ) to evaluate impacts of water stress on k p . Based on regression analysis, for each 1 MPa decrease in mean midday l , sieve cell lumen radius decreased by 2.63 µm MPa –1 . Although there was no significant trend in sucrose content with decreasing l , glucose and fructose content increased significantly with water stress and sieve cell relative water content decreased by 13.5% MPa –1 , leading to a significant increase in sugar molar concentration of 0.46 mol l –1  MPa –1 and a significant increase in viscosity of 0.27 mPa s MPa –1 . Modeled k p was significantly influenced both by trends in viscosity as well as by water stress-related trends in sieve cell anatomy.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-29
    Description: Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 co-occurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ~80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...