ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-27
    Description: Table Bay, South Africa, is a typical headland-bay system with a shoreline that can be described by a logarithmic spiral. A peculiarity and unique feature of Table Bay is the juxtaposition of Robben Island opposite its headland. As a consequence, the bathymetry defines an ellipsoidal basin which was postulated to potentially resonate in the form of long-period standing waves (seiches). One aim of this study, therefore, was to investigate whether any evidence for such resonant oscillations could be detected in the geomorphology and sediment distribution patterns. Indeed, the ellipsoidal shape of the basin can be framed by two converging log-spirals with their centres located opposite each other, one off Robben Island and the other on the Cape Town side of the bay. The so-called apex line, which divides the two spirals into equal parts is aligned SW–NE, i.e. more or less parallel to the direction of ocean wave propagation. The distribution patterns of all sedimentary parameters were found to be characterised by a strikingly similar trend to either side of the apex line. This supports the hypothesis that the basin of Table Bay appears to resonate in the form of a mode 1 standing wave, with the node positioned above the apex line in the centre of the bay. The maximum period of such a standing wave was calculated to be around 37 min. The study demonstrates that large-scale sediment distribution patterns can reveal the existence of specific hydrodynamic processes in coastal embayments. It is recommended that this phenomenon be investigated in greater detail aimed at verifying the existence of resonant oscillations in Table Bay and, in the event, at establishing its precise nature and trigger mechanism.
    Description: Council for Geoscience and CSIR South Africa
    Description: Senckenberg Gesellschaft für Naturforschung (SGN) (3507)
    Keywords: ddc:551.46 ; Oceanography ; South Africa ; Table Bay ; ellipsoidal shape ; sediment distribution ; seiches
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-18
    Description: Table Bay, South Africa, is a typical headland-bay system with a shoreline that can be described by a logarithmic spiral. A peculiarity and unique feature of Table Bay is the juxtaposition of Robben Island opposite its headland. As a consequence, the bathymetry defines an ellipsoidal basin which was postulated to potentially resonate in the form of long-period standing waves (seiches). One aim of this study, therefore, was to investigate whether any evidence for such resonant oscillations could be detected in the geomorphology and sediment distribution patterns. Indeed, the ellipsoidal shape of the basin can be framed by two converging log-spirals with their centres located opposite each other, one off Robben Island and the other on the Cape Town side of the bay. The so-called apex line, which divides the two spirals into equal parts is aligned SW–NE, i.e. more or less parallel to the direction of ocean wave propagation. The distribution patterns of all sedimentary parameters were found to be characterised by a strikingly similar trend to either side of the apex line. This supports the hypothesis that the basin of Table Bay appears to resonate in the form of a mode 1 standing wave, with the node positioned above the apex line in the centre of the bay. The maximum period of such a standing wave was calculated to be around 37 min. The study demonstrates that large-scale sediment distribution patterns can reveal the existence of specific hydrodynamic processes in coastal embayments. It is recommended that this phenomenon be investigated in greater detail aimed at verifying the existence of resonant oscillations in Table Bay and, in the event, at establishing its precise nature and trigger mechanism.
    Print ISSN: 0276-0460
    Electronic ISSN: 1432-1157
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...