ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: Shock structure measurements acquired in a low aspect ratio transonic fan rotor are presented and analyzed. The rotor aspect ratio is 1.56 and the design tip relative Mach number is 1.38. The rotor flowfield was surveyed at near maximum efficiency and near stall operating conditions. Intra-blade velocity measurements acquired with a laser fringe anemometer on blade-to-blade planes in the supersonic region from 10 to 60 percent span are presented. The three-dimensional shock surface determined from the velocity measurments is used to determine the shock surface normal Mach number in order to properly calculate the ideal shock jump conditions. The ideal jump conditions are calculated based upon the Mach numbers measured on a surface of revolution and based upon the normal Mach number to indicate the importance of accounting for shock three dimensionality in turbomachinery design. Comparison of the shock locations with those predicted by a 3-D Euler code showed very good agreement and indicated the usefulness of integrating computational and experimental work to enhance the understanding of the flow physics occurring in transonic turbomachinery passages.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD Transonic and Supersonic Phenomena in Turbomachines; 14 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The tip clearance flows of transonic compressor rotors have a significant impact on rotor and stage performance. Although numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because, in high-speed machines, measurements acquired in sufficient detail to be useful are rare. Researchers at the NASA Glenn Research Center at Lewis Field compared measured tip clearance flow details (e.g., trajectory and radial extent) of the NASA Rotor 35 with results obtained from a numerical simulation. Previous investigations had focused on capturing the detailed development of the jetlike flow leaking through the clearance gap between the rotating blade tip and the stationary compressor shroud. However, we discovered that the simulation accuracy depends primarily on capturing the detailed development of a wall-bounded shear layer formed by the relative motion between the leakage jet and the shroud.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
    Keywords: AERODYNAMICS
    Type: NASA-TM-88915 , E-3339 , NAS 1.15:88915
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The NASA Lewis Research Center has embarked on a program to experimentally prove the concept of a supersonic through-flow fan which is to maintain supersonic velocities throughout the compression system with only weak shock-wave flow losses. The detailed design of a supersonic through-flow fan and estimated off-design performance with the use of advanced computational codes are described. A multistage compressor facility is being modified for the newly designed supersonic through-flow fan and the major aspects of this modification are briefly described.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-88908 , E-3492 , NAS 1.15:88908 , AIAA PAPER 87-1746
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TP-3527 , E-9390 , NAS 1.60:3527 , ARL-TR-333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 87-GT-160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The NASA Lewis Research Center has embarked on a program to experimentally prove the concept of a supersonic through-flow fan which is to maintain supersonic velocities throughout the compression system with only weak shock-wave flow losses. The detailed design of a supersonic through-flow fan and estimated off-design performance with the use of advanced computational codes are described. A multistage compressor facility is being modified for the newly designed supersonic through-flow fan and the major aspects of this modification are briefly described.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 87-1746
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-2879 , E-4480 , NAS 1.60:2879
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-4481 , E-7651 , NAS 1.15:4481 , AVSCOM-TR-91-C-052 , International Gas Turbine and Aero Engine Congress and Exposition; Jun 01, 1992 - Jun 04, 1992; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The impact of the micro-blowing technique (MBT) on the skin friction and total drag of a strut in a turbulent, strong adverse-pressure-gradient flow is assessed experimentally over a range of subsonic Mach numbers (0.3 less than M less than 0.7) and reduced blowing fractions (0 less than or equal to 2F/C (sub f,o) less than or equal to 1.75). The MBT-treated strut is situated along the centerline of a symmetric 2-D diffuser with a static pressure rise coefficient of 0.6. In agreement with presented theory and earlier experiments in zero-pressure-gradient flows, the effusion of blowing air reduces skin friction significantly (e.g., by 60% at reduced blowing fractions near 1.75). The total drag of the treated strut with blowing is significantly lower than that of the treated strut in the limit of zero-blowing; further, the total drag is reduced below that of the baseline (solid-plate) strut, provided that the reduced blowing fractions are sufficiently high. The micro-blowing air is, however, deficient in streamwise momentum and the blowing leads to increased boundary-layer and wake thicknesses and shape factors. Diffuser performance metrics and wake surveys are used to discuss the impact of various levels of micro-blowing on the aerodynamic blockage and loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2001-210690 , NAS 1.15:210690 , ARL-TR-2382 , AIAA Paper 2001-1012 , E-12617 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...