ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-23
    Description: This paper addresses the problem of localization for landing on the surface of icy moons, like Europa or Enceladus. Due to the possibility of specular reflection as well as high bulk albedo, icy surfaces present new challenges that make traditional vision-based navigation systems relying on visible imagery unreliable. We propose augmenting visible light cameras with a thermal-infrared camera using inverse-depth parameterized monocular EKF-SLAM to address problems arising from the appearance of icy moons. Results were obtained from a novel procedural Europa surface simulation which models the appearance and the thermal properties simultaneously from physically-based methods. In this framework, we show that thermal features improve localization by 23% on average when compared to a visible camera. Moreover, fusing both sensing modalities increases the improvement in localization to 31% on average, compared to using a visible light camera alone.
    Keywords: Optics; Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN68167 , NASA/TM-2019-220241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN48090 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN46999 , IROS 2017- International Conference on Intelligent Robots and Systems; Sep 24, 2017 - Sep 28, 2017; Vancouver, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...