ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 2949-2959 
    ISSN: 0887-624X
    Keywords: aspartic acid anhydride ; poly(ethylene glycol) ; poly(L-aspartic acid-co-PEG) ; biodegradable polymers ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The melt polycondensation reaction of the prepolymer prepared from N-(benzyloxycarbonyl)-L-aspartic acid anhydride (N-CBz-L-aspartic acid anhydride) and low molecular weight poly(ethylene glycol) (PEG) using titanium isopropoxide (TIP) as a catalyst produced the new biodegradable poly(L-aspartic acid-co-PEG). This new copolymer had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the preparation of the prepolymer were obtained by using a 0.12 mol % of p-toluenesulfonic acid with PEG 200 for 48 h. The weight-average molecular weight of the prepolymer increased from 1,290 to 31,700 upon melt polycondensation for 6 h at 130°C under vacuum using 0.5 wt % TIP as a catalyst. The synthesized monomer, prepolymer, and copolymer were characterized by FTIR, 1H- and 13C-NMR, and UV spectrophotometers. Thermal properties of the prepolymer and the protected copolymer were measured by DSC. The glass transition temperature (Tg) of the prepolymer shifted to a significantly higher temperature with increasing molecular weight via melt polycondensation reaction, and no melting temperature was observed. The in vitro hydrolytic degradation of these poly(L-aspartic acid-co-PEG) was measured in terms of molecular weight loss at different times and pHs at 37°C. This pH-dependent molecular weight loss was due to a simple hydrolysis of the backbone ester linkages and was characterized by more rapid rates of hydrolysis at an alkaline pH. These new biodegradable poly(L-aspartic acid-co-PEG)s may have potential applications in the biomedical field. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2949-2959, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Rapid Communications 17 (1996), S. 653-659 
    ISSN: 1022-1336
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A novel biodegradable polyester having pendant amine functional groups was snythesized from N-(benzyloxycarbonyl)-L-aspartic anhydride (2) and 1,4-cyclohexanedimethanol (3) by polycondensation reaction using p-toluenesulfonic acid as a catalyst. The synthesized polymer 4 shows the characteristic ester carbonyl absorption peak at 1732 cm-1 in the IR spectrum, and the NMR spectra were consistent with the IR data. Also, the elemental analysis showed that the experimental and calculated values were very close to each other. The weight-average molecular weight of the polymers ranged from 1140 to 5050 and increased with increasing reaction time. This new polymer would have the potential of a drug delivery biomaterial.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-08-01
    Print ISSN: 0170-0839
    Electronic ISSN: 1436-2449
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...