ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉GPS measurements of tidal modulation of ice flow and seismicity within the grounding zone of Beardmore Glacier show that tidally induced fluctuations of horizontal flow are largest near the grounding line and decrease downstream. Seismic activity is continuous, but peaks occur on falling and rising tides. Beamforming methods reveal that most seismic events originate from two distinct locations, one on the grid-north side of the grounding zone, and one on the grid-south side. The broad pattern of deformation generated as Beardmore Glacier merges with the Ross Ice Shelf results in net extension along the grid-north side of the grounding zone and net compression along the grid-south side. During falling tides, seismic activity peaks on both sides because of increased vertical flexure across the grounding line. During rising tides, seismic activity in the region of extension on the grid-north side is relatively low because the tidal influence on both horizontal strain rate and vertical flexure is small. On the grid-south side during rising tides, however, tidally induced horizontal strain rates promote increased seismicity in regions of long-term compressional flow paths. Our study highlights how concurrent geodetic and seismic measurements provide insight into grounding-zone mechanics and their influence on ice-shelf buttressing.〈/p〉〈/div〉
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-21
    Description: GPS measurements of tidal modulation of ice flow and seismicity within the grounding zone of Beardmore Glacier show that tidally induced fluctuations of horizontal flow are largest near the grounding line and decrease downstream. Seismic activity is continuous, but peaks occur on falling and rising tides. Beamforming methods reveal that most seismic events originate from two distinct locations, one on the grid-north side of the grounding zone, and one on the grid-south side. The broad pattern of deformation generated as Beardmore Glacier merges with the Ross Ice Shelf results in net extension along the grid-north side of the grounding zone and net compression along the grid-south side. During falling tides, seismic activity peaks on both sides because of increased vertical flexure across the grounding line. During rising tides, seismic activity in the region of extension on the grid-north side is relatively low because the tidal influence on both horizontal strain rate and vertical flexure is small. On the grid-south side during rising tides, however, tidally induced horizontal strain rates promote increased seismicity in regions of long-term compressional flow paths. Our study highlights how concurrent geodetic and seismic measurements provide insight into grounding-zone mechanics and their influence on ice-shelf buttressing.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-14
    Description: The West Antarctic Ice Sheet (WAIS) presently holds enough ice to raise global sea level by 4.3 m if completely melted. The unknown response of the WAIS to future warming remains a significant challenge for numerical models in quantifying predictions of future sea level rise. Sea level rise is one of the clearest planet-wide signals of human-induced climate change. The Sensitivity of the West Antarctic Ice Sheet to a Warming of 2 ∘C (SWAIS 2C) Project aims to understand past and current drivers and thresholds of WAIS dynamics to improve projections of the rate and size of ice sheet changes under a range of elevated greenhouse gas levels in the atmosphere as well as the associated average global temperature scenarios to and beyond the +2 ∘C target of the Paris Climate Agreement. Despite efforts through previous land and ship-based drilling on and along the Antarctic margin, unequivocal evidence of major WAIS retreat or collapse and its causes has remained elusive. To evaluate and plan for the interdisciplinary scientific opportunities and engineering challenges that an International Continental Drilling Program (ICDP) project along the Siple coast near the grounding zone of the WAIS could offer (Fig. 1), researchers, engineers, and logistics providers representing 10 countries held a virtual workshop in October 2020. This international partnership comprised of geologists, glaciologists, oceanographers, geophysicists, microbiologists, climate and ice sheet modelers, and engineers outlined specific research objectives and logistical challenges associated with the recovery of Neogene and Quaternary geological records from the West Antarctic interior adjacent to the Kamb Ice Stream and at Crary Ice Rise. New geophysical surveys at these locations have identified drilling targets in which new drilling technologies will allow for the recovery of up to 200 m of sediments beneath the ice sheet. Sub-ice-shelf records have so far proven difficult to obtain but are critical to better constrain marine ice sheet sensitivity to past and future increases in global mean surface temperature up to 2 ∘C above pre-industrial levels. Thus, the scientific and technological advances developed through this program will enable us to test whether WAIS collapsed during past intervals of warmth and determine its sensitivity to a +2 ∘C global warming threshold (UNFCCC, 2015).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...