ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 44 (1979), S. 2012-2018 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 47 (1982), S. 4786-4789 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 45 (1980), S. 3068-3072 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 46 (1981), S. 5027-5028 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Sedimentology 48 (2001), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east-central Utah contains three 10- to 20-m thick layers of tide-deposited sandstone arranged in a forward- and then backward-stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave-influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide-influenced river deltas during a time of fluctuating relative sea-level. Shale-dominated offshore marine deposits gradually shoal and become more sandstone-rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea-level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp-based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic-sandstone are exposed, a sharp-based upward-coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide-eroded estuaries, formed during relative sea-level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward-stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward-stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 44 (1997), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 36 (1989), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Quantitative determination of palaeochannel geometry and hydraulics from point bar deposits requires an understanding of the interaction between channel-bend migration, temporal and spatial variation of point bar geometry and facies, and outcrop orientation. This interaction is modelled with the aid of a computer program which predicts three-dimensional (3-D) geometry and grain size variation of point bars. Synthetic deposits are produced for the cases of down-valley bend migration and/or increase in channel-bend sinuosity. Two-dimensional (2-D) cross-sections in varying orientations across these simulated deposits display lateral-accretion bedset surface geometry, and variation in mean bedset grain size and local palaeocurrent orientation.Most cross-sections show point bar deposits thickening away from the meander-belt axis due to a lateral progression from thinner bend-exit deposits to thicker bend-apex deposits (caused by down-valley channel translation), and/or due to a progression from thinner low sinuosity deposits to thicker high sinuosity deposits caused by channel bend expansion. In association with this lateral thickening, bedset surfaces become steeper and more convex upwards while the variation in mean grain size up bedsets commonly increases. Down-valley point bar translation allows preservation only of deposits formed downstream of the band apex, and produces characteristic fining upwards sequences. Marked lateral and vertical variations in palaeocurrent directions due to varying channel orientation relative to a given cross-section are also predicted. These results indicate a need in palaeochannel reconstructions, for a more detailed examination of 3-D variations in bedset surface geometry, palaeocurrent orientation and grain size distribution within and between bedsets of laterally accreted sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical geology 32 (2000), S. 389-419 
    ISSN: 1573-8868
    Keywords: shale ; geostatistics ; Bayes' theorem ; Frontier Formation ; Erlangian ; tide-influenced delta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Mathematics
    Notes: Abstract Dimensions of shales and other geologic bodies that affect fluid flow through reservoirs and aquifers are often estimated from analogous deposits exposed in outcrops. Shale lengths observed in outcrops are biased because the finite length of outcrops truncates longer shales and long shales tend to be overrepresented in the sample. Shale length distributions can be modeled using an Erlangian probability density function based on termination frequency. Termination frequency can be calculated from outcrop observations even if the shales are incompletely exposed. Termination frequency is unbiased regardless of underlying shale length distribution and outcrop size and shape. Complex length distributions can be represented by a weighted sum of Erlangian models, each with a distinct termination frequency. The proportions and termination frequencies of the component models can be estimated using Bayes' theorem. Subsamples of the outcrop area can be analyzed to quantify spatial trends in termination frequency and thus shale length. These methods can be applied to estimate length distributions of any geologic object exposed in outcrops or other spatially limited samples. In many cases estimated termination frequency is normally distributed, and its variance can be estimated using closed-form expressions. Shale length distributions for the Frewens Sandstone were modeled using one- and two-component Erlangian probability density functions. The Frewens Sandstone is a tide-influenced deltaic sandstone body within the Cretaceous-age Frontier Formation, exposed in central Wyoming, USA. Length observations and Erlangian models agree reasonably well. Because the models correct for the effects of shale truncation in limited outcrop exposures, predicted means and proportions of long shales are substantially greater than observed values. There is a vertical trend and pronounced vertical cyclicity in termination frequency, indicating that shales become shorter upward and intervals of longer and shorter shales alternate. Along strike, termination frequency decreases away from the sandstone-body axis, reflecting greater preserved shale lengths toward sandstone-body margins. No correlation was observed between distance along dip and termination frequency. Termination frequencies and histograms of shale length for adjacent, perpendicular walls are similar, indicating that there is no anisotropy in shale length.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1981-01-01
    Print ISSN: 0031-9422
    Electronic ISSN: 1873-3700
    Topics: Biology , Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-02-01
    Print ISSN: 1874-8961
    Electronic ISSN: 1874-8953
    Topics: Geosciences , Mathematics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...