ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: The wall-matching methodology of Wilcox is modified to include a solid-wall, thermal-conduction model. This coupled fluid-thermal-structure model is derived assuming that the wall thermal-structure behavior is locally one-dimensional and that structural deformations, due to thermally induced stresses, are not significant. The one-dimensional coupled fluid-thermal-structure model is derived such that the wall temperature is removed as an independent boundary condition variable. The one-dimensional coupled fluid-thermal-structure model is also derived for the general case of an arbitrary mixture of thermally prefect gases and a wall of arbitrary thickness and conductivity by using a compressible, streamwise-pressure-gradient-corrected, wall-matching function and Fourier's law of heat conduction. The resulting model was implemented in the VULCAN CFD code as a new boundary condition type. VULCAN was then used to simulate a two-dimensional Mach 6 wind tunnel facility nozzle flow to demonstrate/validate the one-dimensional coupled fluid-thermal-structure model. The nozzle internal-wall surface temperature and heat transfer distributions computed using the one-dimensional coupled fluid-thermal-structure model are compared to wall temperature and heat transfer distributions from an iterative multi-dimensional analysis obtained by coupling the VULCAN CFD code and the MSC/NASTRAN-thermal code. The one-dimensional coupled fluid-thermal-structure model analysis is shown to be very robust and in excellent agreement with the multi-dimensional iteratively coupled analysis. It is also shown that the one-dimensional analysis can be used as an initial guess for the multi-dimensional iteratively coupled analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting; Volume 1; 259-269; CPIA-Publ-713-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-15629 , AIAA Computational Fluid Dynamics Conference; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the crossflow dominated transition over the HIFiRE-1 and HIFiRE-5 configurations, this paper also analyzes boundary layer instabilities over a subscale model of the HIFiRE-5 flight configuration that was tested in the Mach 6 quiet tunnel facility at Purdue University.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-13774 , 42nd AIAA Fluid Dynamics Conference and Exhibit; Jun 25, 2012 - Jun 28, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.
    Keywords: Aerodynamics
    Type: NF1676L-13982 , International Conference on Computational Fluid Dynamics; Jul 09, 2012 - Jul 13, 2012; Kohala Coast, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.
    Keywords: Aerodynamics
    Type: NF1676L-13407 , RTO AVT-200 RSM-030 Specialists'' Meeting on Hypersonic Laminar-Turbulent Transition; Apr 16, 2012 - Apr 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
    Keywords: Fluid Mechanics and Thermodynamics; Aerodynamics
    Type: NF1676L-28704 , 2017 JANNAF - Interagency Propulsion Committee meeting; Dec 04, 2017 - Dec 08, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: The wall-matching methodology of Wilcox is modified to include a solid-wall, thermal-conduction model. This coupled fluid-thermal-structure model is derived assuming that the wall thermal-structure behavior is locally one-dimensional and that structural deformations, due to thermally induced stresses, are not significant. The one-dimensional coupled fluid-thermal-structure model is derived such that the wall temperature is removed as an independent boundary condition variable. The one-dimensional coupled fluid-thermal-structure model is also derived for the general case of an arbitrary mixture of thermally prefect gases and a wall of arbitrary thickness and conductivity by using a compressible, streamwise-pressure-gradient-corrected, wall-matching function and Fourier's law of heat conduction. The resulting model was implemented in the VULCAN CFD code as a new boundary condition type. VULCAN was then used to simulate a two-dimensional Mach 6 wind tunnel facility nozzle flow to demonstrate/validate the one-dimensional coupled fluid-thermal-structure model. The nozzle internal-wall surface temperature and heat transfer distributions computed using the one-dimensional coupled fluid-thermal-structure model are compared to wall temperature and heat transfer distributions from an iterative multi-dimensional analysis obtained by coupling the VULCAN CFD code and the MSC/NASTRAN-thermal code. The one-dimensional coupled fluid-thermal-structure model analysis is shown to be very robust and in excellent agreement with the multi-dimensional iteratively coupled analysis. It is also shown that the one-dimensional analysis can be used as an initial guess for the multi-dimensional iteratively coupled analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF 2002 CS/APS/PSHS/MSS Joint Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2371 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.
    Keywords: Aerodynamics
    Type: NF1676L-9733 , 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 28, 2010 - Jul 01, 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...