ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-01-11
    Description: Recent years have witnessed increasing efforts to engineer artificial biological functions through recombination of modular-organized toolboxes of protein scaffolds and parts. A critical, yet frequently neglected aspect concerns the identity of peptide linkers or spacers connecting individual domains which remain poorly understood and challenging to assemble. Addressing these limitations, iFlinkC comprises a highly scalable DNA assembly process that facilitates the combinatorial recombination of functional domains with linkers of varying length and flexibility, thereby overcoming challenges with high GC-content and the repeat nature of linker elements. The capacity of iFLinkC is demonstrated in the construction of synthetic protease switches featuring PDZ-FN3-based affinity clamps and single-chain FKBP12-FRB receptors as allosteric inputs. Library screening experiments demonstrate that linker space is highly plastic as the induction of allosterically regulated protease switches can vary from 〉150-fold switch-ON to 〉13-fold switch-OFF solely depending on the identity of the connecting linkers and relative orientation of functional domains. In addition, Pro-rich linkers yield the most potent switches contradicting the conventional use of flexible Gly-Ser linkers. Given the ease and efficiency how functional domains can be readily recombined with any type of linker, iFLinkC is anticipated to be widely applicable to the assembly of any type of fusion protein.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...