ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2020-08-01
    Print ISSN: 0277-3791
    Electronic ISSN: 1873-457X
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-02
    Description: Minerals are the building blocks of clastic sediments and play an important role with respect to the physico-chemical properties of the sediment and the lithostratigraphy of sediments. This paper aims to provide an overview of the mineralogy (including solid organic matter) of sediments as well as suspended matter as found in the Netherlands (and some parts of Belgium). The work is based on a review of the scientific literature published over more than 100 years. Cenozoic sediments are addressed together with suspended matter and recent sediments of the surface water systems because they form a geoscientific continuum from material subject to transport via recently settled to aged material. Most attention is paid to heavy minerals, clay minerals, feldspars, Ca carbonates, reactive Fe minerals (oxides, siderite, sulphides, glauconite) and solid organic matter because they represent the dominant minerals and their properties form a main issue in subsurface and water management. When possible and relevant, the amounts, provenance, relationship with grain size distribution, early diagenesis and palaeohydrological evolution are described. Tables with statistical data about the mineral contents and isotopic composition of carbonates and organic matter are presented as overviews. The review on the mineralogy of Dutch fluvial and marine environments is more extensive than that for the other sedimentary environments because the first two have been studied much more intensively than the others and they also form the larger part of the Dutch deposits. The focus is on the natural background mineralogy of Dutch sediments, but this is hard for recent sediments, largely because the massive hydraulic infrastructure present in the Netherlands has probably also affected the mineralogy and geochemistry of sediments deposited in recent centuries. Many findings are summarised, several of which lead to more general insights for the Dutch situation. Ca carbonates in sediments often have several provenances and thus must be considered as mixtures. Dolomite is commonly present in addition to calcite. The importance of biotite as weatherable mica is unclear. Weathering of heavy minerals plays some role but it is unclear in which way it affects the heavy mineral associations. Clays are usually dominated by illite, smectite and their interstratified variant, while kaolinite is usually below 20% and chlorite below 5%. Vermiculite is a minor constituent in fluvial clays and its illitisation presumably happens during early diagenesis in the marine environment. Opaque Fe hydroxides can be present in addition to Fe oxyhydroxide coatings and both will play a role in redox chemistry as reactive Fe minerals. Feldspars in marine sediments must be present but they have not been properly studied. The genesis of rattle stones and carbonate concretions has not been completely elucidated. The fraction of terrigeneous organic matter in estuarine and coastal marine sediments is substantial. The available data and information are spread irregularly over the country and the reviewed information discussed in this paper is derived from relatively small-scale studies dealing with a limited amount of analysed samples. Much information is available from the Scheldt estuaries in the southwestern part of the Netherlands partly due to the severe contamination of the Western Scheldt in recent decades.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-03-01
    Description: The fluvial history of the northern Lower Rhine Embayment shows interplay of three main river systems: Rhine, Meuse and smaller rivers draining the central and northern part of Belgium.The Pliocene and Early Pleistocene (pre-)Rhine and Meuse river systems had their conjunction in the southern part of the Roer Valley Graben between Aachen and Jülich. Despite slight differences in the heavy-mineral assemblages the lithological composition of the Pliocene deposits of the three river systems shows close resemblance and therefore they cannot be mapped separately. However, due to a marked change of the petrographical composition the Upper Pliocene and Lower Pleistocene deposits of the Rhine are easily recognised and as a result Rhine and Meuse deposits can be mapped separately upstream of their confluence.The Lower Pleistocene deposits of Rhine, Meuse and the Belgian rivers show a clear interrelationship. They are bounded by two regional well-mapable unconformities and are preserved in from west to east changing lithostratigraphical sequences. Revision of the lithostratigraphical schemes in Germany and the Netherlands and the better defined lithostratigraphical position of Meuse deposits in Germany now strongly constrain the correlation of the various fluvial deposits. As a result existing reconstructions of the fluvial deposition and tectonic history of the southern Roer Valley Graben can be evaluated and re-adjusted.It is concluded that the main course of the Meuse was aligned through the so-called East Meuse valley during the larger part of the Early Pleistocene. Available pollen data do not conflict with this conclusion. At the same time the Rhine ceased to enter the southern part of the Roer Valley Graben. Instead, the Meuse accumulated here a series of deposits derived from the East-Meuse valley. Simultaneously, the Belgian rivers filled available accommodation space in the Roer Valley Graben of the southern Netherlands. The conclusions are based primarily on the revised lithostratigraphical framework. In general they simplify the picture of fluvial and tectonic behaviour of the area.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-01
    Description: This special issue contains the papers presented during the 2004 DEUQUA meeting. The papers provide an overview of recently carried out Quaternary geological studies on different aspects of the river Rhine system. The introductory paper follows the pathway of the Rhine downstream from its source in the Swiss Alps to the delta in the Netherlands. Along this route geological and geographical factors determine the regional subdivisions of the river: the Alps, the Upper Rhine Graben, the Rhenish Massif, and the Lower Rhine Embayment as part of the southern North Sea Basin. Each of these regions can be typified by a characteristic geological evolution.New evidence from heavy-mineral analyses provides an improved lithostratigraphy and insight in the Quaternary evolution of the Rhine in the Upper Rhine Graben. The Plio-Pleistocene transition is determined by a palaeomagnetic study. The same paper emphasis on the impact of climate change on the composition of the magneto-mineralogy. Pollen analytical results show a complex interrelationship of a number of Middle Pleistocene interglacial periods in the northern part the Upper Rhine Graben. In the same area geomorphological analysis demonstrates a clear influence of tectonics on the preservation of fluvial terrace accumulations. A detailed pollen analytical study on the Late Glacial and Holocene development of the Rhine in the northern Upper Rhine Graben discusses the relation between vegetation cover and river behaviour. Finally, two papers from the Lower Rhine Embayment discuss a revised provenance based lithostratigraphy and its implications for understanding the fluvial history.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-01
    Description: Over the last ten to twenty years, geological surveys all over the world have been entangled in a process of digitisation. Their paper archives, built over many decades, have largely been replaced by electronic databases. The systematic production of geological map sheets is being replaced by 3D subsurface modelling, the results of which are distributed electronically. In the Netherlands, this transition is both being accelerated and concluded by a new law that will govern management and utilisation of subsurface information. Under this law, the Geological Survey of the Netherlands has been commissioned to build a key register for the subsurface: a single national database for subsurface data and information, which Dutch government bodies are obliged to use when making policies or decisions that pertain to, or can be affected by the subsurface. This requires the Survey to rethink and redesign a substantial part of its operation: from data acquisition and interpretation to delivery. It has also helped shape our view on geological surveying in the future.The key register, which is expected to start becoming operational in 2015, will contain vast quantities of subsurface data, as well as their interpretation into 3D models. The obligatory consultation of the register will raise user expectations of the reliability of all information it contains, and requires a strong focus on confidence issues. Building the necessary systems and meeting quality requirements is our biggest challenge in the upcoming years. The next step change will be towards building 4D models, which represent not only geological conditions in space, but also processes in time such as subsidence, anthropogenic effects, and those associated with global change.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-09-01
    Description: Application of the traditional lithostratigraphic framework to subdivide the Middle- and Upper-Quaternary locally-derived fine-grained deposits in the Netherlands is problematic. Deposits of many formations cannot be distinguished from each other based on lithological characteristics and stratigraphie position alone. To overcome this problem, we present a new, well-defined lithostratigraphy for these deposits, based on detailed research in the central part of the Roer Valley Graben. This area contains an up to 35 m-thick sedimentary record of Middle- and Upper-Quaternary sand, loam and peat deposits. These have mainly been formed by aeolian and small-scale fluvial processes and have been preserved as a result of tectonic subsidence. The traditional lithostratigraphic subdivision of these deposits into three formations (Eindhoven Formation, Asten Formation and Twente Formation) was based on a combination of litho-, bio- and chronostratigraphic evidence and the presumed widespread presence of a horizon of organic-rich interglacial sediments of Eemian age. To avoid intermingling of criteria regarding lithological characteristics, genesis and age, we now incorporate all fine-grained sediments into the new Boxtel Formation. The implications for the lithostratigraphic framework in other parts of the country are explored and discussed. Eight lithostratigraphic members are introduced that describe the most characteristic parts of the formation. To fully illustrate the sedimentary sequence in the Roer Valley Graben, two new members are defined here. The Best Member incorporates alternating floodloam deposits and sandy aeolian deposits in the lower part of the Boxtel Formation. The Liempde Member includes reworked aeolian loess and sandy loess deposits (‘Brabant loam’) that occur in the upper part of the sedimentary sequence.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-01
    Description: Silica sand, (almost) pure quartz sand, is a valuable and scarce mineral resource within the shallow Dutch subsurface. High-grade deposits are exploited in the southeasternmost part of the country, as raw material for the glass, ceramic, chemical and other process industries. Dutch land-use policy requires that scarce mineral resources (including silica sand) are taken into consideration in spatial planning and when preparing for largescale engineering or construction works. For this purpose, and in order to review the long-term possibilities for home production of silica sand, we determined resource potential nationally.Our approach was (1) to establish the relevant conditions and processes associated with the deposition of the currently exploited sands, (2) identify lithostratigraphic units that are genetically similar or are otherwise known to contain quartz-rich sands, and (3) query the Dutch geological survey's borehole database for potential silica sand occurrences within those units. As we have to rely on non-dedicated data, the latter step was undertaken using a largely qualitative set of lithological search parameters. Finally, a limited number of available chemical analyses was used for preliminary verification purposes.Using this approach, we identified three prospective areas: one in the north of the province of Limburg and east of the province of Noord-Brabant(~750 km2), one in the central south of Noord-Brabant (~45 km2), and one in the east of the Gelderland and Overijssel provinces (~1,200 km2). For each area, first-order characteristics of possible silica sand resources are presented (type of deposit, depth, approximate thickness). In the terms of current reporting conventions, we resolved silica sand occurrence to the level of ‘reconnaissance mineral resource’ or ‘exploration result’, and our results do not constitute a formal resource declaration. Available chemical data suggest that the resources in the first two areas could be or become economic, although the grades are lower than those of the currently exploited resources. The third area is less promising in that respect, but available data is too limited to reject the area in this stage. Even so, we tentatively conclude that home production of silica sand can probably be maintained after the reserves in Limburg are depleted.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-05-01
    Print ISSN: 1040-6182
    Electronic ISSN: 1873-4553
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1982-01-01
    Print ISSN: 0341-8162
    Electronic ISSN: 1872-6887
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1982-09-01
    Print ISSN: 0341-8162
    Electronic ISSN: 1872-6887
    Topics: Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...