ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-07
    Description: This paper proposes an object-based approach to supervised change detection using uncertainty analysis for very high resolution (VHR) images. First, two temporal images are combined into one image by band stacking. Then, on the one hand, the stacked image is segmented by the statistical region merging (SRM) to generate segmentation maps; on the other hand, the stacked image is classified by the support vector machine (SVM) to produce a pixel-wise change detection map. Finally, the uncertainty analysis for segmented objects is implemented to integrate the segmentation map and pixel-wise change map at the appropriate scale and generate the final change map. Experiments were carried out with SPOT 5 and QuickBird data sets to evaluate the effectiveness of proposed approach. The results indicate that the proposed approach often generates more accurate change detection maps compared with some methods and reduces the effects of classification and segment scale on the change detection accuracy. The proposed method supplies an effective approach for the supervised change detection for VHR images.
    Print ISSN: 1687-725X
    Electronic ISSN: 1687-7268
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-23
    Description: This study presents a novel approach for unsupervised change detection in multitemporal remotely sensed images. This method addresses the problem of the analysis of the difference image by proposing a novel and robust semi-supervised fuzzy C-means (RSFCM) clustering algorithm. The advantage of the RSFCM is to further introduce the pseudolabels from the difference image compared with the existing change detection methods; these methods, mainly use difference intensity levels and spatial context. First, the patterns with a high probability of belonging to the changed or unchanged class are identified by selectively thresholding the difference image histogram. Second, the pseudolabels of these nearly certain pixel-patterns are jointly exploited with the intensity levels and spatial information in the properly defined RSFCM classifier in order to discriminate the changed pixels from the unchanged pixels. Specifically, labeling knowledge is used to guide the RSFCM clustering process to enhance the change information and obtain a more accurate membership; information on spatial context helps to lower the effect of noise and outliers by modifying the membership. RSFCM can detect more changes and provide noise immunity by the synergistic exploitation of pseudolabels and spatial context. The two main contributions of this study are as follows: (1) it proposes the idea of combining the three information types from the difference image, namely, (a) intensity levels, (b) labels, and (c) spatial context; and (2) it develops the novel RSFCM algorithm for image segmentation and forms the proposed change detection framework. The proposed method is effective and efficient for change detection as confirmed by six experimental results of this study.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: A method capable of automatically reconstructing 3D building models with semantic information from the unstructured 3D point cloud of indoor scenes is presented in this paper. This method has three main steps: 3D segmentation using a new hybrid algorithm, room layout reconstruction, and wall-surface object reconstruction by using an enriched approach. Unlike existing methods, this method aims to detect, cluster, and model complex structures without having prior scanner or trajectory information. In addition, this method enables the accurate detection of wall-surface “defacements”, such as windows, doors, and virtual openings. In addition to the detection of wall-surface apertures, the detection of closed objects, such as doors, is also possible. Hence, for the first time, the whole 3D modelling process of the indoor scene from a backpack laser scanner (BLS) dataset was achieved and is recorded for the first time. This novel method was validated using both synthetic data and real data acquired by a developed BLS system for indoor scenes. Evaluating our approach on synthetic datasets achieved a precision of around 94% and a recall of around 97%, while for BLS datasets our approach achieved a precision of around 95% and a recall of around 89%. The results reveal this novel method to be robust and accurate for 3D indoor modelling.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Detecting events using social media data is important for timely emergency response and urban monitoring. Current studies primarily use semantic-based methods, in which “bursts” of certain semantic signals are detected to identify emerging events. Nevertheless, our consideration is that a social event will not only affect semantic signals but also cause irregular human mobility patterns. By introducing depictive features, such irregular patterns can be used for event detection. Consequently, in this paper, we develop a novel, comprehensive workflow for event detection by mining the geographical patterns of VGI. This workflow first uses data geographical topic modeling to detect the hashtag communities with VGI semantic data. Both global and local indicators are then constructed by introducing spatial autocorrelation measurements. We then adopt an outlier test and generate indicator maps to spatiotemporally identify the potential social events. This workflow was implemented using a real-world dataset (104,000 geo-tagged photos) and the evaluation was conducted both qualitatively and quantitatively. A set of experiments showed that the discovered semantic communities were internally consistent and externally differentiable, and the plausibility of the detected events was demonstrated by referring to the available ground truth. This study examined the feasibility of detecting events by investigating the geographical patterns of social media data and can be applied to urban knowledge retrieval.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-17
    Description: Validation of land cover products is a fundamental task prior to data applications. Current validation schemes and methods are, however, suited only for assessing classification accuracy and disregard the reliability of land cover products. The reliability evaluation of land cover products should be undertaken to provide reliable land cover information. In addition, the lack of high-quality reference data often constrains validation and affects the reliability results of land cover products. This study proposes a validation schema to evaluate the reliability of land cover products, including two methods, namely, result reliability evaluation and process reliability evaluation. Result reliability evaluation computes the reliability of land cover products using seven reliability indicators. Process reliability evaluation analyzes the reliability propagation in the data production process to obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and improved in the reliability analysis of a data production process. Research results show that the proposed reliability evaluation scheme is reasonable and can be applied to validate land cover products. Through the analysis of the seven indicators of result reliability evaluation, more information on land cover can be obtained for strategic decision-making and planning, compared with traditional accuracy assessment methods. Process reliability evaluation without the need for reference data can facilitate the validation and reflect the change trends of reliabilities to some extent.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-22
    Description: The extraction of road centerline from the classified image is a fundamental image analysis technology. Common problems encountered in road centerline extraction include low ability for coping with the general case, production of undesired objects, and inefficiency. To tackle these limitations, this paper presents a novel accurate centerline extraction method using Gaussian mixture model (GMM) and subspace constraint mean shift (SCMS). The proposed method consists of three main steps. GMM is first used to partition the classified image into several clusters. The major axis of the ellipsoid of each cluster is extracted and deemed to be taken as the initial centerline. Finally, the initial result is adjusted using SCMS to produce precise road centerline. Both simulated and real datasets are used to validate the proposed method. Preliminary results demonstrate that the proposed method provides a comparatively robust solution for accurate centerline extraction from a classified image.
    Print ISSN: 1687-725X
    Electronic ISSN: 1687-7268
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-13
    Description: Change detection (CD) based on remote sensing images plays an important role in Earth observation. However, the CD accuracy is usually affected by sunlight and atmospheric conditions and sensor calibration. In this study, a scale-driven CD method incorporating uncertainty analysis is proposed to increase CD accuracy. First, two temporal images are stacked and segmented into multiscale segmentation maps. Then, a pixel-based change map with memberships belonging to changed and unchanged parts is obtained by fuzzy c-means clustering. Finally, based on the Dempster-Shafer evidence theory, the proposed scale-driven CD method incorporating uncertainty analysis is performed on the multiscale segmentation maps and the pixel-based change map. Two experiments were carried out on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and SPOT 5 data sets. The ratio of total errors can be reduced to 4.0% and 7.5% for the ETM+ and SPOT 5 data sets in this study, respectively. Moreover, the proposed approach outperforms some state-of-the-art CD methods and provides an effective solution for CD.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-09
    Description: High precision geometric rectification of High Resolution Satellite Imagery (HRSI) is the basis of digital mapping and Three-Dimensional (3D) modeling. Taking advantage of line features as basic geometric control conditions instead of control points, the Line-Based Transformation Model (LBTM) provides a practical and efficient way of image rectification. It is competent to build the mathematical relationship between image space and the corresponding object space accurately, while it reduces the workloads of ground control and feature recognition dramatically. Based on generalization and the analysis of existing LBTMs, a novel rigorous LBTM is proposed in this paper, which can further eliminate the geometric deformation caused by sensor inclination and terrain variation. This improved nonlinear LBTM is constructed based on a generalized point strategy and resolved by least squares overall adjustment. Geo-positioning accuracy experiments with IKONOS, GeoEye-1 and ZiYuan-3 satellite imagery are performed to compare rigorous LBTM with other relevant line-based and point-based transformation models. Both theoretic analysis and experimental results demonstrate that the rigorous LBTM is more accurate and reliable without adding extra ground control. The geo-positioning accuracy of satellite imagery rectified by rigorous LBTM can reach about one pixel with eight control lines and can be further improved by optimizing the horizontal and vertical distribution of control lines.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Land use and land cover changes (LULCC) are prime variables that reflect changes in ecological systems. The Guangdong, Hong Kong, and Macau (GHKM) region located in South China has undergone rapid economic development and urbanization over the past three decades (1986–2017). Therefore, this study investigates the changes in LULC of GHKM based on multi-year Landsat and nighttime light (NTL) data. First, a supervised classification technique, i.e., support vector machine (SVM), is used to classify the Landsat images into seven thematic classes: forest, grassland, water, fishponds, built-up, bareland, and farmland. Second, the demographic activities are studied by calculating the light index, using nighttime light data. Third, several socioeconomic factors, derived from statistical yearbooks, are used to determine the impact on the LULCC in the study area. The post-classification change detection shows that the increase in the urban area, from 0.76% (1488.35 km2) in 1986 to 10.31% (20,643.28 km2) in 2017, caused GHKM to become the largest economic segment in South China. This unprecedented urbanization and industrialization resulted in a substantial reduction in both farmland (from 53.54% (105,123.93 km2) to 33.07% (64,932.19 km2)) and fishponds (from 1.25% (2463.35 km2) to 0.85% (1674.61 km2)) during 1986–2017. The most dominant conversion, however, was of farmland to built-up area. The subsequent urban growth is also reflected in the increasing light index trends revealed by NTL data. Of further interest is that the overall forest cover increased from 33.24% (65,257.55 km2) to 45.02% (88,384.19 km2) during the study period, with a significant proportion of farmland transformed into forest as a result of different afforestation programs. An analysis of the socioeconomic indicators shows that the increase in gross domestic product, total investment in real estate, and total sales of consumer goods, combined with the overall industrialization, have led to (1) urbanization on a large scale, (2) an increased light index, and (3) the reduction of farmland. The speed of development suggests that opportunistic development has taken place, which requires a pressing need to improve land policies and regulations for more sustainable urban development and protection of farmland.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-18
    Description: Understanding the spatial patterns of urban land use at both the macro and the micro levels is a central issue in global change studies. Due to the nonlinear features associated with land use spatial patterns, it is currently necessary to provide some distinct analysis methods to analyze them across a range of remote sensing imagery resolutions. The objective of our study is to quantify urban land use patterns from various perspectives using multidimensional fractal methods. Three commonly used fractal dimensions, i.e., the boundary dimension, the radius dimension, and the information entropy dimension, are introduced as the typical indices to examine the complexity, centrality and balance of land use spatial patterns, respectively. Moreover, a new lacunarity dimension for describing the degree of self-organization of urban land use at the macro level is presented. A cloud-free Landsat ETM+ image acquired on 17 September 2010 was used to extract land use information in Wuhan, China. The results show that there are significant linear relationships represented by good statistical fitness related to these four indices. The results indicate that rapid urbanization has substantially affected the urban landscape pattern, and different land use types show different spatial patterns in response. This analysis reveals that multiple fractal/nonfractal indices provides a more comprehensive understanding of the spatial heterogeneity of urban land use spatial patterns than any single fractal dimension index. These findings can help us to gain deeper insight into the complex spatial patterns of urban land use.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...