ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-11-15
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-27
    Description: A 50 day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface–atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil=[NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil-atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a~simple resistance model. Vegetative effects were neglected due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m−2 s−1 in August (i.e. net emission) and −5.8 ± 3.0 ng m−2 s−1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (HYSPLIT) was used to calculate air parcel back trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil-atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3(g)]. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-02
    Description: Continuous hourly measurements of gas-phase ammonia (NH3(g)) were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30–650 ng m−3 (40–870 pptv) with the highest values recorded in Lancaster Sound (74°13' N, 84°00' W). Simultaneous measurements of total ammonium ([NHx]), pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ), which is the ambient NH3(g) concentration at which surface–air fluxes change direction. Ambient NH3(g) was usually several orders of magnitude larger than both χocean and χMP (〈 0.4–10 ng m3) indicating these surface pools are net sinks of NH3(g). Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m-2 s-1 for the open ocean and melt ponds, respectively. Sufficient NH3(g) was present to neutralize non-sea salt sulphate (nss-SO42-) in the boundary layer during most of the study. This finding was corroborated with a historical dataset of PM2.5 composition from Alert, NU (82°30' N, 62°20' W) wherein the median ratio of NH4+/nss-SO42- equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g) emissions from seabird guano on boundary-layer composition and nss-SO42- neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g) by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g) concentrations and nss-SO42- neutralization. This is strong evidence that seabird colonies are significant sources of NH3(g) in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely an important source of NH3(g), but their influence was probably limited to the Central Canadian Arctic. Implications of seabird-derived N-deposition to terrestrial and aquatic ecosystems are also discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-07
    Description: A growing number of ambient measurements of isocyanic acid (HNCO) are being made, yet little is known about its fate in the atmosphere. To better understand HNCO's loss processes and particularly its atmospheric partitioning behavior, we measure its effective Henry's Law solubility coefficient KHeff with a bubbler experiment using chemical ionization mass spectrometry as the gas phase analytical technique. By conducting experiments at different pH values and temperature, a Henry's Law coefficient KH of 26 ± 2 M atm-1 is obtained, with an enthalpy of dissolution of −34 ± 2 kJ mol-1. Our approach also allows for the determination of HNCO's acid dissociation constant, which we determine to be Ka = 2.1 ± 0.2 × 10-4 M at 298 K. Furthermore, by using ion chromatography to analyze aqueous solution composition, we revisit the hydrolysis kinetics of HNCO at different pH and temperature conditions. Three pH dependent hydrolysis mechanisms are in play and we determine the Arrhenius expressions for each rate to be k1 = (4.4 ± 0.2) × 107 exp (−6000 ± 240/T) M s-1, k2 = (8.9±0.9) × 106 exp (−6770 ± 450/T) s-1 and k3 = (7.2±1.5) × 108 exp (−10 900 ± 1400/T) s-1 where k1 is for HNCO + H+ + H2O → NH4+ + CO2, k2 is for HNCO + H2 O → NH3 + CO2 and k3 is for NCO- + 2H2 O → NH3 + HCO3-. HNCO's lifetime against hydrolysis is therefore estimated to be 10 days to 28 years at pH values, liquid water contents, and temperatures relevant to tropospheric clouds, years in oceans and months in human blood. In all, a better parameterized Henry's Law coefficient and hydrolysis rates of HNCO allow for more accurate predictions of its concentration in the atmosphere and consequently help define exposure of this toxic molecule.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-16
    Description: A 50-day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface–atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil = [NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil–atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a simple resistance model. Vegetative effects were ignored due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m−2 s−1 in August (i.e. net emission) and −5.8 ± 3.0 ng m−2 s−1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (Hybrid Single-Particle Lagrangian Integrated Trajectory – HYSPLIT) was used to calculate air parcel back-trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil–atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3]g. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-21
    Description: A growing number of ambient measurements of isocyanic acid (HNCO) are being made, yet little is known about its fate in the atmosphere. To better understand HNCO's loss processes and particularly its atmospheric partitioning behaviour, we measure its effective Henry's Law coefficient KHeff with a bubbler experiment using chemical ionization mass spectrometry as the gas phase analytical technique. By conducting experiments at different pH values and temperature, a Henry's Law coefficient KH of 26 ± 2 M atm−1 is obtained, with an enthalpy of dissolution of −34 ± 2 kJ mol−1, which translates to a KHeff of 31 M atm−1 at 298 K and at pH 3. Our approach also allows for the determination of HNCO's acid dissociation constant, which we determine to be Ka = 2.1 ± 0.2  ×  10−4 M at 298 K. Furthermore, by using ion chromatography to analyze aqueous solution composition, we revisit the hydrolysis kinetics of HNCO at different pH and temperature conditions. Three pH-dependent hydrolysis mechanisms are in play and we determine the Arrhenius expressions for each rate to be k1 = (4.4 ± 0.2)  ×  107 exp(−6000 ± 240∕T) M s−1, k2 = (8.9 ± 0.9)  ×  106  exp(−6770 ± 450∕T) s−1 and k3 =  (7.2 ± 1.5)  ×  108 exp(−10 900 ± 1400∕T) s−1, where k1 is for HNCO + H++ H2O  →  NH4++ CO2, k2 is for HNCO + H2O  →  NH3 + CO2 and k3 is for NCO−+ 2 H2O  →  NH3+ HCO3−. HNCO's lifetime against hydrolysis is therefore estimated to be 10 days to 28 years at pH values, liquid water contents, and temperatures relevant to tropospheric clouds, years in oceans and months in human blood. In all, a better parameterized Henry's Law coefficient and hydrolysis rates of HNCO allow for more accurate predictions of its concentration in the atmosphere and consequently help define exposure of this toxic molecule.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...