ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2003-01-15
    Description: The control of neutrophil turnover in the circulation is a key event in homeostasis and inflammation. Using CD18- deficient (CD18−/−) mice that show a 19-fold increase of blood neutrophil counts when compared with wild-type animals (CD18+/+), we found that apoptosis of peripheral neutrophils was significantly reduced from 27.4% in the wild-type to 4.8% inCD18−/− mice within 4 hours after isolation as measured by analysis of DNA content. This was confirmed by detecting CD16 expression, nuclear morphology, and internucleosomal DNA degradation. In contrast, no difference in apoptosis was observed in neutrophils derived from the bone marrow. Neutrophilia and delayed neutrophil apoptosis were also present inCD18−/−/interleukin 6 (IL-6−/−) double knockout mice. Moreover, plasma ofCD18−/− mice was not able to delay apoptosis of CD18+/+neutrophils and plasma ofCD18+/+ mice did not augment apoptosis of CD18−/−neutrophils. However,CD18−/− neutrophils revealed an up-regulation of the antiapoptotic gene bcl-Xl and a down-regulation of the proapoptotic gene bax-α compared withCD18+/+ neutrophils suggesting that this delayed apoptosis. Accordingly, down-regulation of Bax-α using antisense technique delayed apoptosis and prolonged neutrophil survival. The replacement of the hematopoietic system of CD18+/+ mice by a 1:1 mixture of CD18+/+ andCD18−/− hematopoietic cells abolished the delay of apoptosis in peripheralCD18−/− neutrophils and prevented neutrophilia. Altogether, this suggests that a delay of neutrophil apoptosis inCD18−/− mice causes an alteration of neutrophil homeostasis, which may induce the massive increase of peripheral neutrophil counts. Thus, apoptosis seems to be critically involved in the control of neutrophil turnover in the circulation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-01
    Description: In this study, a mechanism is reported which determines the lifetime of polymorphonuclear neutrophils (PMN). In human PMN freshly isolated from the circulation, expression of bcl-Xl, bax-, and bak, members of the bcl-2 family of apoptosis-associated genes, was found using the reverse transcription-polymerase chain reaction technique. In contrast, no expression of bcl-2 was seen in PMN, whereas the myeloid cell line HL-60 was positive for bcl-2 mRNA. Two gene products, Bcl-Xl and Bax-, which are known to function as the regulatory machinery of programmed cell death (apoptosis), were detected at the protein level in PMN. Moreover, differential expression of these proteins was found upon induction or prevention of apoptosis by cytokines: Whereas induction of apoptosis by tumor necrosis factor- was associated with a reduction of expression of the anti-apoptotic Bcl-Xl protein, prevention of apoptosis by granulocyte-macrophage colony-stimulating factor led to a downregulation of expression of the death-promoting Bax- protein. This shift of balance of anti- and pro-apoptotic proteins was found to control caspase-3 activity which, in turn, downregulated Bcl-Xl expression in PMN undergoing apoptosis. Thus, cytokines can affect the ratio of Bax-/Bcl-Xl expression in human PMN and modulate the subsequent activity of caspase-3, which functions as executer of the programmed cell death and may promote apoptosis by a positive feed-forward mechanism that downregulates Bcl-Xl.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-01
    Description: In this study, a mechanism is reported which determines the lifetime of polymorphonuclear neutrophils (PMN). In human PMN freshly isolated from the circulation, expression of bcl-Xl, bax-, and bak, members of the bcl-2 family of apoptosis-associated genes, was found using the reverse transcription-polymerase chain reaction technique. In contrast, no expression of bcl-2 was seen in PMN, whereas the myeloid cell line HL-60 was positive for bcl-2 mRNA. Two gene products, Bcl-Xl and Bax-, which are known to function as the regulatory machinery of programmed cell death (apoptosis), were detected at the protein level in PMN. Moreover, differential expression of these proteins was found upon induction or prevention of apoptosis by cytokines: Whereas induction of apoptosis by tumor necrosis factor- was associated with a reduction of expression of the anti-apoptotic Bcl-Xl protein, prevention of apoptosis by granulocyte-macrophage colony-stimulating factor led to a downregulation of expression of the death-promoting Bax- protein. This shift of balance of anti- and pro-apoptotic proteins was found to control caspase-3 activity which, in turn, downregulated Bcl-Xl expression in PMN undergoing apoptosis. Thus, cytokines can affect the ratio of Bax-/Bcl-Xl expression in human PMN and modulate the subsequent activity of caspase-3, which functions as executer of the programmed cell death and may promote apoptosis by a positive feed-forward mechanism that downregulates Bcl-Xl.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...