ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-10-25
    Description: Faced with the biggest virus outbreak in a century, world governments at the start of 2020 took unprecedented measures to protect their healthcare systems from being overwhelmed in the light of the COVID-19 pandemic. International travel was halted and lockdowns were imposed. Many nations adopted measures to stop the transmission of the virus, such as imposing the wearing of face masks, social distancing, and limits on social gatherings. Technology was quickly developed for mobile phones, allowing governments to track people’s movements concerning locations of the virus (both people and places). These are called contact tracing applications. Contact tracing applications raise serious privacy and security concerns. Within Europe, two systems evolved: a centralised system, which calculates risk on a central server, and a decentralised system, which calculates risk on the users’ handset. This study examined both systems from a threat perspective to design a framework that enables privacy and security for contact tracing applications. Such a framework is helpful for App developers. The study found that even though both systems comply with the General Data Protection Regulation (GDPR), Europe’s privacy legislation, the centralised system suffers from severe risks against the threats identified. Experiments, research, and reviews tested the decentralised system in various settings but found that it performs better but still suffers from inherent shortcomings. User tracking and re-identification are possible, especially when users report themselves as infected. Based on these data, the study identified and validated a framework that enables privacy and security. The study also found that the current implementations using the decentralised Google/Apple API do not comply with the framework.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...