ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 61 (1999), S. 19-43 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Regulation of gastrointestinal (GI) motility is intimately coordinated with the modulation of ionic conductances expressed in GI smooth muscle and nonmuscle cells. Interstitial cells of Cajal (ICC) act as pacemaker cells and possess unique ionic conductances that trigger slow wave activity in these cells. The slow wave mechanism is an exclusive feature of ICC: Smooth muscle cells may lack the basic ionic mechanisms necessary to generate or regenerate slow waves. The molecular identification of the components for these conductances provides the foundation for a complete understanding of the ionic basis for GI motility. In addition, this information will provide a basis for the identification or development of therapeutics that might act on these channels. It is much easier to study these conductances and develop blocking drugs in expression systems than in native GI muscle cells. This review focuses on the relationship between ionic currents in native GI smooth muscle cells and ICC and their molecular counterparts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 68 (2006), S. 307-343 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: In the gastrointestinal tract, phasic contractions are caused by electrical activity termed slow waves. Slow waves are generated and actively propagated by interstitial cells of Cajal (ICC). The initiation of pacemaker activity in the ICC is caused by release of Ca2+ from inositol 1,4,5-trisphosphate (IP3) receptorĐ??operated stores, uptake of Ca2+ into mitochondria, and the development of unitary currents. Summation of unitary currents causes depolarization and activation of a dihydropyridine-resistant Ca2+ conductance that entrains pacemaker activity in a network of ICC, resulting in the active propagation of slow waves. Slow wave frequency is regulated by a variety of physiological agonists and conditions, and shifts in pacemaker dominance can occur in response to both neural and nonneural inputs. Loss of ICC in many human motility disorders suggests exciting new hypotheses for the etiology of these disorders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In gastrointestinal muscles special cells, referred to as interstitial cells, may be involved in pacemaking and transduction of inputs from the enteric nervous system. We have used a modification of the NADH diaphorase method to characterize the distribution of interstitial cells in the muscularis externa of the canine colon. The staining product of the NADH diaphorase reaction is useful because it allows light and electron microscopic studies to be performed with the same marker. Therefore rigorous identification of the cells observed at the light microscopic level could be made by electron microscopy. We were able to lable at least three classes of interstitial cells: (1) at the submucosal surface of the circular muscle layer; (2) within the thickness of the circular and longitudinal muscle layers; and (3) in the region of the myenteric plexus. This technique also labeled cell bodies and initial segments of processes of Dogiel type II neurones in enteric ganglia. Nerve fibres within the muscle layers did not exhibit NADH diaphorase activity. This study has identified the interstitial cells within the circular and longitudinal muscle layers and shows the arrangement of these cells in a three-dimensional network.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The expression of nitric oxide synthase (NOS) in the mucosa of the canine colon was investigated with in situ hybridzation, immunohistochemistry (using isoform specific antibodies), western analysis, and NADPH diaphorase (NADPH-d) histochemistry. In situ hybridization using a common probe for known isoforms of NOS showed that NOS mRNA was strongly expressed in mucosal cells. A gradient in the degree of hybridization was noted from the base of the crypts to the luminal surface. This gradient was also apparent using an endothelial NOS (eNOS)-specific probe. Neural NOS-like immunoreactivity (nNOS-LI) was observed in columnar epithelial cells, and the same population of cells was stained with NADPH-d. Endothelial NOS-like immunoreactivity (eNOS-LI) was also found in mucosal cells; however, this eNOS-LI was confined to mucous cells. These cells were not stained with NADPH-d. The existence of cNOS in mucosal cells was confirmed by in situ hybridization using the probe which specifically hybridized with mRNA of eNOS and by western blots which demonstrated the expression of a 135-kDa protein in mucosal homogenates. The differential expression of NOS isoforms and the gradient in expression along the length of the crypts suggest complex roles for NO in the development of colonic epithelial cells and in secretion and transport functions of the colonic mucosa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Transdifferentiation Smooth muscle Skeletal muscle Esophagus Unicryl Colloid gold immunocytochemistry Mouse (BALB/c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The ultrastructure of the mouse esophagus at the level of the diaphragm was studied from embryo day 17 to adult. The transdifferentiation of smooth muscle into skeletal muscle was categorized into seven ultrastructural stages: during phase I normal smooth muscle myogenesis was observed. In phase II subpopulations of cells changed into aggregates of myoblast-like cells. At the center of these cell aggregates, phase III cells appeared that contained condensed myofilaments. Dense bodies and dense bands appeared enlarged by the accumulation of thin filaments. In phase IV the condensed myofilaments organized into sarcomere pretemplate structures. The dense bodies and dense bands formed rudimentary Z-lines. In phase V the sarcomere templates appeared as more defined structures and began to align. An elaborate perinuclear region appeared. During phase VI, skeletal muscle sarcomeres were apparent and myofilaments were arranged in a typical hexagonal array. Phase VII skeletal muscle fibers were unique with sarcomeric bifurcations and anastomoses between adjacent myofibrils. Non-contractile organelles were less organized in these cells than in skeletal muscles such as rectus and vastus lateralis muscles. During the transdifferentiation process, other cell types remained unchanged, except the number of interstitial cells of Cajal became reduced. Immunocytochemical studies with antibodies against smooth and skeletal muscle myosin were also performed during the process of transdifferentiation. An osmium tetroxide/potassium ferricyanide en bloc mordant enabled the use of ultrathin Unicryl sections for immunocytochemistry. Cells exhibited smooth muscle myosin-like immunoreactivity from the smooth muscle stage through the condensed myofilament stage. Cells were immunopositive for skeletal muscle myosin before the formation of sarcomere templates, during the condensed stage, and after development of mature skeletal muscle cells. We also observed a hybrid muscle cell with properties of both smooth and skeletal muscle cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 302 (2000), S. 331-342 
    ISSN: 1432-0878
    Keywords: Interstitial cells of Cajal Enteric nerves PGP 9.5 Nitric oxide synthase Vesicular acetylcholine transporter Gastrointestinal tract Mouse (Balb/c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Interstitial cells of Cajal (ICC) are interposed between enteric neurons and smooth muscle cells in gastrointestinal (GI) muscles. The specific relationships between these cells in the murine proximal colon were studied with conventional and immunoelectron microscopy and immunohistochemistry. Intramuscular interstitial cells (IC-IM) formed discrete networks within the circular muscle layer of the murine proximal colon. Nerve trunks ran in close association with IC-IM and individual nerve trunks came into close contact with multiple IC-IM. Conventional electron microscopy revealed very close (≤20 nm) associations between nerve fibers and IC-IM. Processes of IC-IM also formed close contacts with neighboring smooth muscle cells. At the points of close association between neurons and IC-IM, areas of membrane densification in both pre- and postjunctional cells were present, suggesting specialized contacts or synaptic-like structures. Similar points of contact between neurons and smooth muscle cells were extremely rare. Immunoelectron microscopy demonstrated that IC-IM formed close associations with neurons containing nitric oxide synthase-like immunoreactivity (NOS-LI) or vesicular acetylcholine transporter-like immunoreactivity (vAChT-LI), suggesting innervation by both inhibitory and excitatory motor neurons. IC-IM were also labeled with anti-NOS antibodies. These observations suggest that IC-IM are an integral part of the neuromuscular junction in the colon. These cells may be the primary site of innervation, and neural regulation of the musculature may occur via IC-IM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Key words: Interstitial cells of Cajal ; Gastrointestinal motility ; Enteric nervous system ; Smooth muscle ; Rhythmicity ; Immunohistochemistry ; Proto-oncogene ; Tyrosine kinase ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Interstitial cells of Cajal (ICC) of various morphologies have been described in the gastrointestinal (GI) tracts of mammals. Different classes of ICC are likely to have different functional roles. ICC of the mouse GI tract have been shown to express c-kit, a proto-oncogene that codes for a receptor tyrosine kinase. We have studied the distribution of ICC within the guinea pig GI tract using antibodies to c-Kit protein and immunohistochemical techniques. c-Kit-like immunoreactivity revealed at least 6 types of ICC: (1) intramuscular ICC (IC-IM1) that lie within the muscle layers of the esophagus, stomach, and cecum, (2) ICC within the myenteric plexus region (IC-MY1) in the corpus, antrum, small intestine, and colon,(3) ICC that populate the deep muscular plexus of the small intestine (IC-DMP), (4) ICC at the submucosal surface of the circular muscle layer in the colon (IC-SM), (5) stellate ICC that are closely associated with the myenteric plexus (IC-MY2) and orientated toward the longitudinal muscle layer in the colon, and (6) branching intramuscular ICC (IC-IM2) in the proximal colon within the circular and longitudinal muscle layers. c-Kit immunohistochemistry appears to be an excellent and selective technique for labeling ICC of the guinea-pig GI tract. Labeling of these cells at the light-microscopic level provides an opportunity for characterizing the distribution, density, organization, and relationship between ICC and other cell types.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Key words: Gastrointestinal motility ; Enteric nervous system ; Smooth muscle ; Rhythmicity ; Proto-oncogene ; Tyrosine kinase ; Interstitial cells of Cajal ; Mouse (BALB/c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. In vivo injection of a neutralizing, monoclonal antibody (ACK2) to the receptor tyrosine kinase (c-kit) disrupts the normal motility patterns of the mouse small intestine. Immunohistochemical studies showed that cells expressing c-kit-like immunoreactivity (c-kit-LI) decreased in numbers in response to ACK2, but the identity of these cells is unknown. We investigated the identity and development of the cells that express c-kit-LI in the mou se small intestine and colon. Cells in the region of the myenteric plexus and deep muscular plexus of the small intestine and in the subserosa, in the myenteric plexus region, within the circular and longitudinal muscle layers, and along the submucosal surface of the circular muscle in the colon were labeled with ACK2. The distribution of cells that express c-kit-LI was the same as that of interstitial cells (ICs). In whole-mount preparations cells with c-kit-LI were interconnected, formin g a network similar to the network formed by cells that stained with methylene blue, which has been used as a marker for ICs in the mouse gastrointestinal tract. Immunocytochemistry verified that ICs were labeled with ACK2. Multiple injections of animals with ACK2 between days 0 and 8 post partum (pp) caused a dramatic reduction in the number of ICs compared to control animals. From an ultrastructural point of view, the proliferation and development appeared to be suppressed in some classes of ICs, while ot hers displayed an altered course of development. Functional studies showed that the decrease in ICs was accompanied by a loss of electrical rhythmicity in the small intestine and reduced neural responses in the small bowel and colon. Morphological experiments showed that c-kit-positive cells are ICs, and physiological evidence reinforced the concept that ICs are involved in generation of rhythmicity and translation of neural inputs in gastrointestinal smooth muscles. Controlling the development of ICs provides a powerful new tool for the investigation of the physiological role of these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Gastrointestinal motility ; Enteric nervous system ; Smooth muscle ; Rhythmicity ; Proto-oncogene ; Tyrosine kinase ; Interstitial cells of Cajal ; Mouse (BALB/c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In vivo injection of a neutralizing, monoclonal antibody (ACK2) to the receptor tyrosine kinase (c-kit) disrupts the normal motility patterns of the mouse small intestine. Immunohistochemical studies showed that cells expressing c-kit-like immunoreactivity (c-kit-LI) decreased in numbers in response to ACK2, but the identity of these cells is unknown. We investigated the identity and development of the cells that express c-kit-LI in the mouse small intestine and colon. Cells in the region of the myenteric plexus and deep muscular plexus of the small intestine and in the subserosa, in the myenteric plexus region, within the circular and longitudinal muscle layers, and along the submucosal surface of the circular muscle in the colon were labeled with ACK2. The distribution of cells that express c-kit-LI was the same as that of interstitial cells (ICs). In whole-mount preparations cells with c-kit-LI were interconnected, forming a netword similar to the network formed by cells that stained with methylene blue, which has been used as a marker for ICs in the mouse gastrointestinal tract. Immunocytochemistry verified that ICs were labeled with ACK2. Multiple injections of animals with ACK2 between days 0 and 8 post partum (pp) caused a dramatic reduction in the number of ICs compared to control animals. From an ultrastructural point of view, the proliferation and development appeared to be suppressed in some classes of ICs, while others displayed an altered course of development. Functional studies showed that the decrease in ICs was accompanied by a loss of electrical rhythmicity in the small intestine and reduced neural responses in the small bowel and colon. Morphological experiments showed that c-kit-positive cells are ICs, and physiological evidence reinforced the concept that ICs are involved in generation of rhythmicity and translation of neural inputs in gastrointestinal smooth muscles. Controlling the development of ICs provides a powerful new tool for the investigation of the physiological role of these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 275 (1994), S. 513-527 
    ISSN: 1432-0878
    Keywords: Key words: Nitric oxide synthase – NADPH-diaphorase – Gastroduodenal sphincter –Ileocolonic sphincter – Enteric nervous system – Gastrointestinal tract – Dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The distribution of neurons containing NADPH-diaphorase (NADPH-d) activity and nitric oxide synthase-like immunoreactivity (NOS-LI) in the canine pyloric and ileocolonic sphincters was studied. Cells within the myenteric and submucosal ganglia were positive for NADPH-d. These cells generally had the morphology of Dogiel type-I enteric neurons, however, there was some diversity in the morphology of NADPH-d-positive neurons in the myenteric plexus of the pylorus. Intramuscular ganglia were observed in both sphincters, and NADPH-d was found in a sub-population of neurons within these ganglia. Dual staining with an antiserum raised against nitric oxide synthase (NOS) demonstrated that almost all cells with NOS-LI were also NADPH-d positive. Varicose fibers within ganglia and within the circular and longitudinal muscle layers also possed NOS-LI and NADPH-d activity. Dual staining with anti-VIP antibodies showed that some of the NADPH-d-positive cells in the myenteric and submucosal ganglia also contained VIP-LI, but all VIP-LI-positive cells did not express NADPH-d activity. These data are consistent with recent physiological studies suggesting that nitric oxide serves as an inhibitory neurotransmitter in the pyloric and ileocolonic sphincters. The data also suggest that VIP is expressed in a sub-population of NADPH-d-positive neurons and may therefore act as a co-transmitter in enteric inhibitory neurotransmission to these specialized muscular regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...