ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 81 (1977), S. 2069-2073 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 45 (1941), S. 443-453 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 8074-8079 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electric properties of In0.12Ga0.88As/GaAs p-i-n multiple-quantum-well (MQW) diodes, with the MQW layer grown at different temperatures by molecular beam epitaxy, have been investigated. Temperature-dependent current–voltage studies reveal a trap-filled limit current at a low temperature and a generation-recombination current via deep levels at high temperature for a 300 °C-grown sample. Frequency-dependent capacitance and deep-level transient spectroscopy reveal one majority trap at 0.73 eV and two minority traps at 0.71 and 0.43 eV. The 0.73 eV trap is also detected in 550 °C-grown samples, suggesting that it is a common defect in relaxed InGaAs/GaAs MQWs and probably originates from the defect states related to the strain relaxation. The 0.71 eV trap is believed to be the dominating deep level that governs the current conduction due to the activation energy observed in the current–voltage characteristics. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 1251-1254 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The onset of strain relaxation in In0.2Ga0.8As/GaAs quantum-well structures is investigated. X-ray diffraction shows that when the InGaAs thickness increases beyond its critical thickness, another peak on the right shoulder of the GaAs peak appears, indicating that the top GaAs layer is being compressed in the growth direction by the relaxation of the InGaAs layer. Energy shifts of 44 and 49 meV are observed, respectively, from the strains of the InGaAs and GaAs top layers when increasing the InGaAs thickness from 300 and 1000 Å. These energy shifts are in agreement with theory calculated based on the relaxation process observed in x-ray diffraction, providing evidence that the relaxation occurs from near the bottom InGaAs/GaAs interface while the top interface still remains strained. This result is further corroborated by the images of cross-sectional transmission electron micrographs which show that most of the misfit dislocations are confined near the bottom interface. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 1369-1373 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An increase in leakage current accompanied by a drastic carrier depletion is found for InGaAs/GaAs Schottky diodes when the InGaAs thickness is larger than its critical thickness. Due to drastic carrier depletion, free-carrier concentration around the InGaAs region for relaxed samples cannot be obtained from capacitance–voltage data but from resistance–capacitance time constant effect observed in capacitance–frequency measurement. A trap at 0.33 to 0.49 eV is observed for relaxed samples by deep-level transient spectroscopy. The resistance caused by carrier depletion has an activation energy close to that of the trap, supporting that the carrier depletion is caused by capture from the trap. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 66 (1995), S. 2864-2866 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A δ-doped GaAs/In0.2Ga0.8As p-channel heterostructure field-effect transistor grown by low-pressure metalorganic chemical vapor deposition is demonstrated. The mobilities and two-dimensional hole gas concentrations at 300 (77) K are 260 (2600) cm2/v s and 1012 (5.5×1011) cm−2, respectively. For a gate length of 1.5 μm, the maximum extrinsic transconductances are 15 mS/mm at 300 K and 24 mS/mm at 77 K. The high transconductances extend a wide range versus gate voltage. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 1841-1843 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The ESR observations of three distinct paramagnetic centers in TeO2 glasses are reported. One center is intrinsic to the glass and the other two are induced by KrF-excimer-laser radiation. The intrinsic center with a broad ESR spectrum is tentatively identified as an oxygen-associated hole center. One radiation-induced center fades slowly at room temperature; its proposed structure is that of an electron trapped in a diffuse orbital associated with a modifier ion. The other radiation-induced center is stable at room temperature and corresponds to the VO⋅ center observed in crystalline paratellurite. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 2461-2463 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Strong changes in capacitance over frequency are found for highly relaxed In0.2Ga0.8As/GaAs quantum well. The high-frequency dispersion is explained by a resistance–capacitance time constant effect due to the existence of a high resistive layer while the low-frequency dispersion is due to carrier emission from traps. The high-resistance layer is created by carrier depletion when InGaAs thickness increases beyond the critical thickness. Excellent agreement is found between the data from capacitance–frequency spectra and deep-level transient spectroscopy, permitting us to conclude that both the carrier depletion and emission effects observed in capacitance–frequency spectra are due to the existence of an acceptor trap at 0.33 eV. This trap is generated when the InGaAs thickness is beyond its critical thickness and is due to defect states associated with misfit dislocations. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 2665-2667 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temperature dependence of persistent photoconductivity (PPC) has been investigated in high-quality C60 single crystals. We found that the rotational order and disorder phase transition (Tc≈260 K) can significantly change the PPC behavior. At temperatures above Tc, the PPC relaxation rate increases as temperature increases. Quite surprisingly, in the region T〈Tc, the PPC relaxation rate decreases with increasing temperature. Our result clearly indicates that the underlying mechanism of the PPC effect involves the motion of the C60 molecule. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 3027-3029 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The carrier distribution and defects have been investigated in InAs/GaAs quantum dots by cross-sectional transmission electron microscopy (XTEM), capacitance–voltage, and deep level transient spectroscopy. Carrier confinement is found for 1.1- and 2.3-monolayer-(ML)-thick InAs samples. For 2.3 ML sample, XTEM images show the presence of defect-free self-assembled quantum dots. With further increase of the InAs thickness to 3.4 ML, significant carrier depletion caused by the relaxation is observed. In contrast to 1.1 and 2.3 ML samples in which no traps are detected, two broad traps and three discrete traps at 0.54, 0.40, and 0.34 eV are observed in 3.4 ML sample. The traps at 0.54 and 0.34 eV are found to be similar to the traps observed in relaxed In0.2Ga0.8As/GaAs single quantum well structures. By comparing with the XTEM images, the trap at 0.54 eV is identified to be the relaxation-induced dislocation trap in the GaAs layer. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...