ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Diet ; Ecomorphology ; Functional morphology ; Tetraodontiformes ; Trophic morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationships between prey utilization and jaw biomechanics were explored in two Caribbean populations (La Parguera and Mona Island) of four trigger-fishes. The volumetric contribution of major prey types and six biomechanical features of the jaws that characterize biting strength were contrasted between populations. At Mona, Xanthichthys ringens ate 45% benthic organisms, whereas conspecifics at La Parguera fed exclusively on plankton. Balistes vetula at Mona consumed 63% soft and nonelusive invertebrates, in contrast to their La Parguera conspecifics, which consumed 62% hard prey. Differences in diet between populations were associated with differences in jaw biomechanics. Xanthichthys at Mona had jaw muscles, bones, and closing-lever ratios larger than those of fish at La Parguera, indicating a stronger bite. Balistes at Mona had 50% smaller jaw bones, muscles, and closing-lever ratios than their La Parguera conspecifics, indicating a weaker but swifter bite. Melichthys niger and Cantherhines macrocerus ate similar prey at the two locations and showed little difference in trophic anatomy. We hypothesize that the interpopulation differences in morphology are induced by the activities of feeding on different prey and enhance the feeding ability of fishes for locally dominant prey. Plasticity of the feeding mechanism may be a widespread attribute of fish feeding systems that promotes the ability of species to occupy multiple habitat types successfully.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Diet ; Functional morphology ; Lepomis ; Molluscs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The pumpkinseed sunfish (Lepomis gibbosus Linnaeus; Centrarchidae) feeds extensively on molluscs, crushing them between its pharyngeal jaws. To address whether differences in mollusc availability might affect pumpkinseed diet and jaw morphology, we collected pumpkinseed from six Wisconsin lakes that varied in mollusc abundance and diversity. The percentage of molluscs in the diet increased directly with mollusc abundance. Moreover, there was a positive correlation between the mass of the pumpkinseed's main crushing muscle, the levator posterior, and the percentage of molluscs in the diet. These data support our previous work in two Michigan lakes showing that pumpkinseed pharyngeal jaws were more robust, and mollusc crushing performance improved, in a lake with higher mollusc densities. The combined Wisconsin and Michigan data exhibit a single relationship between levator posterior mass and percentage of molluscs eaten. Taken together, these studies demonstrate strong, functional relationships between prey availability, diet, morphology, and feeding performance, and suggest how morphology and feeding efficiency may evolve in response to variation in resource density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 449 (2007), S. 79-82 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Most bony fishes rely on suction mechanisms to capture and transport prey. Once captured, prey are carried by water movement inside the oral cavity to a second set of jaws in the throat, the pharyngeal jaws, which manipulate the prey and assist in swallowing. Moray eels display much less ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 44 (1995), S. 97-113 
    ISSN: 1573-5133
    Keywords: Ecomorphology ; Serranidae ; Centrachidae ; Jaw mechanics ; Gape limited feeding ; Allometry ; Feeding ecology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis Ecomorphological analyses that search for patterns of association between morphological and prey-use data sets will have a greater chance of understanding the causal relationships between form and diet if the morphological variables used have known consequences for feeding performance. We explore the utility of fish body size, mouth gape and jaw-lever mechanics in predicting patterns of prey use in two very different communities of fishes, Caribbean coral reef fishes, and species of the Centrarchidae that live in Lake Opinicon, Ontario. In spite of major differences in the spectrum of potential prey available, the centrarchids of Lake Opinicon show dietary transitions during ontogeny that are very similar to those seen among and within species of Caribbean groupers (Serranidae). The transition from small zooplankton to intermediate sized invertebrates and ultimately to fishes appears to be very general in ram-suction feeding fishes and is probably driven largely by the constraints of mouth size on prey capture ability. The jaw-lever systems for mouth opening and closing represent direct trade-offs for speed and force of jaw movement. The ratio of in-lever to out-lever in the opening system changes during ontogeny in bluegill, indicating that the mechanics and kinematics of jaw movement may change as well. Among 34 species of Caribbean reef fishes, biting species had jaw-closing ratios that favored force translation, while species that employ rapid-strike ram-suction had closing ratios that enhanced speed of closing and mouth opening ratios that favored a more rapid expansion of the mouth during the strike. We suggest that when prey are categorized into functional groups, reflecting the specific performance features that are important in capturing and handling them, and the differences among habitats in the available prey resource are taken into account, general patterns can be found in morphology-diet relations that cross phylogenetic boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 215 (1993), S. 101-118 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 200 (1989), S. 231-245 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A new mechanical model for function of the pharyngeal jaw apparatus in generalized perciform fishes is developed from work with the family Haemulidae. The model is based on anatomical observations, patterns of muscle activity during feeding (electromyography), and the actions of directly stimulated muscles. The primary working stroke of the pharyngeal apparatus involves simultaneous upper jaw depression and retraction against a stabilized and elevating lower jaw. The working stroke is characterized by overlapping activity in most branchial muscles and is resolved into three phases. Four muscles (obliquus dorsalis 3, levator posterior, levator externus 3/4, and obliquus posterior) that act to depress the upper jaws become active in the first phase. Next, the retractor dorsalis, the only upper jaw retracting muscle, becomes active. Finally, there is activity in several muscles (transversus ventrales, pharyngocleithralis externus, pharyngohyoideus, and protractor pectoralis) that attach to the lower jaws. The combined effect of these muscles is to elevate and stabilize the lower jaws against the depressing and retracting upper jaws.The model identifies a novel mechanism of upper jaw depression, here proposed to be the primary component of the perciform pharyngeal jaw bite. The key to this mechanism is the joint between the epibranchial and toothed pharyngobranchial of arches 3 and 4. Dorsal rotation of epibranchials 3 and 4 about the insertion of the obliquus posterior depresses the lateral border of pharyngobranchials 3 and 4 (upper jaw). The obliquus dorsalis 3 muscle crosses the epibranchial-pharyngo-branchial joint in arches 3 and 4, and several additional muscles effect epibranchial rotation. Five upper jaw muscles cause upper jaw depression upon electrical stimulation: the obliquus dorsalis 3, levator posterior, levator externus 3/4, obliquus posterior, and transversus dorsalis. This result directly contradicts previous interpretations of function for the first three muscles. The presence of strong depression of the upper pharyngeal jaws explains the ability of many generalized perciform fishes to crush hard prey in their pharyngeal apparatus.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 202 (1989), S. 129-150 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The feeding mechanism of Epibulus insidiator is unique among fishes, exhibiting the highest degree of jaw protrusion ever described (65% of head length). The functional morphology of the jaw mechanism in Epibulus is analyzed as a case study in the evolution of novel functional systems. The feeding mechanism appears to be driven by unspecialized muscle activity patterns and input forces, that combine with drastically changed bone and ligament morphology to produce extreme jaw protrusion. The primary derived osteological features are the form of the quadrate, interopercle, and elongate premaxilla and lower jaw. Epibulus has a unique vomero-interopercular ligament and enlarged interoperculo-mandibular and premaxilla-maxilla ligaments. The structures of the opercle, maxilla, and much of the neurocranium retain a primitive labrid condition. Many cranial muscles in Epibulus also retain a primitive structural condition, including the levator operculi, expaxialis, sternohyoideus, and adductor mandibulae. The generalized perciform suction feeding pattern of simultaneous peak cranial elevation, gape, and jaw protrusion followed by hyoid depression is retained in Epibulus. Electromyography and high-speed cinematography indicate that patterns of muscle activity during feeding and the kinematic movements of opercular rotation and cranial elevation produce a primitive pattern of force and motion input. Extreme jaw protrusion is produced from this primitive input pattern by several derived kinematic patterns of modified bones and ligaments. The interopercle, quadrate, and maxilla rotate through angles of about 100 degrees, pushing the lower jaw into a protruded position. Analysis of primitive and derived characters at multiple levels of structural and functional organization allows conclusions about the level of design at which change has occurred to produce functional novelties.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2018-11-26
    Electronic ISSN: 2397-334X
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-01
    Print ISSN: 1055-7903
    Electronic ISSN: 1095-9513
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...