ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-05-28
    Description: The concrete/mortar durability performance depends mainly on the environmental conditions, the microstructures, and its chemistry. Cement structures are subject to deterioration by the ingress of aggressive media. This study focused on the effects of Bacillus megaterium and Lysinibacillus sphaericus on flexural strength and chloride ingress in mortar prisms. Microbial solutions with a concentration of 1.0 × 107 cells/ml were mixed with ordinary Portland cement (OPC 42.5 N) to make mortar prisms at a water/cement ratio of 0.5. Four mortar categories were obtained from each bacterium based on mix and curing solution. Mortar prisms of 160 mm × 40 mm × 40 mm were used in this study. Flexural strength across all mortar categories was determined at the 14th, 28th, and 56th day of curing. Mortars prepared and cured using bacterial solution across all curing ages exhibited the highest flexural strength as well as the highest percent flexural strength gain. Lysinibacillus sphaericus mortars across all mortar categories showed higher flexural strength and percent flexural strength gain than Bacillus megaterium mortars. The highest percent flexural strength gain of 33.3% and 37.0% was exhibited by the 28th and 56th day of curing, respectively. The mortars were subjected to laboratory prepared 3.5% by mass of sodium chloride solution under the accelerated ion migration test method for thirty-six hours using a 12 V Direct Current power source after their 28th day of curing. After subjecting the mortar cubes to Cl media, their core powder was analyzed for Cl content. From these results, the apparent diffusion coefficient, Dapp, was approximated from solutions to Fick’s 2nd Law using the error function. Bacillus megaterium mortars across all mortar categories showed lower apparent diffusion coefficient values with the lowest being 2.6456 × 10–10 while the highest value for Lysinibacillus sphaericus mortars was 2.8005 × 10–10. Both of the test bacteria lowered the ordinary Portland cement Cl-ingress but Bacillus megaterium was significantly more effective than Lysinibacillus sphaericus in inhibition.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-18
    Description: Cement-based materials are subject to degradation during their service life. Most of the structural failures have been associated with corrosion of the rebar due to chloride ingress, alkali aggregate reaction, and/or sulfate attack. Microbial activities, especially in waste water collection points such as sewer lines, may compromise the integrity of concrete structures. This study reports an experimental work carried out to determine the effect of Starkeya novella bacteria species on mechanical and microstructural properties of cement mortars. Mortar prisms were prepared from selected ordinary Portland cement (OPC) and Portland pozzolana cement (PPC) in Kenyan markets. Bacterial solution of 1.0 × 107 cell/mL concentration was used as either mix water, curing media, or both. Distilled water was used to prepare mortar prisms for control samples. Compressive strength was determined after the 7th, 28th, 56th, and 90th day of curing. Scanning electron microscopy (SEM) was tested on both bacterial and control mortar prisms after the 28th day of curing. Both PPC and OPC exhibited significant decrease in compressive strength for bacterial-prepared mortars as compared to controls. SEM analysis showed extreme erosion on the microstructure of the microbial mortars. This was denoted by massive formation of ettringite and gypsum which are injurious to mortar/concrete.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-17
    Description: Pyroprocessing is an important stage in cement manufacturing. In this process, materials are subjected to high temperatures so as to cause a chemical or physical change. Its control improves efficiency in energy utilization and hence enhances production for good quality assurance. Kilns used in cement manufacturing are complex in nature. They have longer time constants, and raw materials used have variable properties. They are therefore difficult to control. Additionally, the inclusion of various alternative fuels in burning makes the process more complex as the fuel characteristics remain inconsistent throughout the kiln operation. Fuel intensity standards for kilns using fuel oil are very high, ranging from 2.9 GJ to 7.5 GJ/ton of clinker produced. Grinding of clinker consumes power in the range of 2.5 kWh/ton of clinker produced. These and other pyroprocessing parameters make cement production costly. The pyroprocessing process in kilns and the grinding technologies therefore have to be optimized for best processing. This paper discusses the cement manufacturing and grinding processes. The traditional kiln technologies and the current and emerging technologies together with general fuel and energy requirements of cement manufacturing have been discussed. From the discussion, it has been established that the cement manufacturing and grinding technologies are capital-intensive investments. The kiln processes are advanced and use both electricity and natural fuels which are expensive and limited factors of production. The raw materials used in cement manufacturing are also limited and sometimes rare. The calcination of the raw materials requires external energy input which has contributed to the high cost of cement especially to low-income population in the developing countries. Self-calcining materials, in which the pozzolanic materials burn on their own, are potential pozzolanic materials with great potential to lower the cost of cement production. Such materials, as shown from the previous research study, are rice husks, broken bricks, spent bleaching earth, and lime sludge. There is a need, therefore, for research to look into ways of making cement using kiln processes that would use this property. This will be cost-effective if successful. It can be done at micro- and small-scale enterprise.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-27
    Description: Cement-made materials face durability and sustainability challenges. This is majorly caused by the presence of cracks. Cracking affects the mechanical strength of cement-based materials. Microbiologically induced calcite precipitation (MICP) has been found to enhance compressive strength, thus enhancing on the mechanical and durability properties of these materials. This paper presents the findings of a study conducted to investigate the effect of Bacillus cohnii on compressive strength development of OPC mortar prisms and the effect of Bacillus cohnii on cement setting time and soundness. Microbial concentration of 1.0 × 107 cells·ml−1 was used. Compressive strength tests analyses were carried out for each category of mortar prisms. Compressive strength tests were carried out on the 2nd, 7th, 14th, 28th, 56th, and 90th day of curing in distilled water and microbial solutions. All microbial mortars exhibited a greater compressive strength compared to the control with the highest observed at 90 days. Highest percentage gain in compressive strength was observed at 90 days which is 28.3%. Microstructural analysis was carried out using a scanning electron microscope (SEM) after 28 days of curing. The results indicated the presence of calcium carbonate and more calcium silicate hydrate (CSH) deposits on the bacterial mortars. The bacteria did not have an effect on cement soundness. Setting time was significantly accelerated.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
  • 7
  • 8
    Publication Date: 2019-08-21
    Description: Cement structures are major capital investments globally. However, exposure of cement-based materials to aggressive media such as chloride- and sulphate-laden environments such as coastal areas affects their performance. Ordinary Portland cement (OPC) is the main cement used in buildings and civil structures such as dams and bridges. This paper reports the findings of an experimental investigation on the effect of ingress of Cl− and SO42− on compressive strength development and the ions’ diffusivity in selected OPC brands in Kenya. The aggressive media used included seawater (SW) and wastewater from leather industry (WLI). Three brands of commonly used cements of OPC in Kenya were used. Mortar prisms were prepared from each brand of cement at different water-to-cement ratios (w/c) of 0.5, 0.6, 0.65, and 0.7 and allowed to cure for 28 days in a highly humid environment. The aggressive ions’ ingress in the mortar prisms was accelerated using a potential difference of 12 V ± 0.1 V. Analysis of diffusivity and diffusion coefficient of Cl− and SO42− was finally done. Compressive strength analysis was done before (at the 2nd, 7th, 14th, and 28th day) and after exposure to the aggressive ions. The results showed that the diffusivity of chlorides was more pronounced than that of sulphates. Diffusivity was observed to be higher at higher w/c ratios for all cement categories. It was observed that compressive strength increased with curing age, with the highest observed at 28 days. Cement A was generally found to have the highest compressive strength for all w/c ratios. The compressive strength was observed to increase after the mortar prisms were exposed to SW as opposed to the ones exposed to WLI. Generally, it was also observed that the strength gain increased with increase in w/c. The loss in strength was also observed to increase with increase in w/c.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-01
    Description: Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC) at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC), and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp) were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-01
    Description: Blended cements are preferred to Ordinary Portland Cement (OPC) in construction industry due to costs and technological and environmental benefits associated with them. Prevalence of significant quantities of carbon dioxide (CO2) in the atmosphere due to increased industrial emission is deleterious to hydrated cement materials due to carbonation. Recent research has shown that blended cements are more susceptible to degradation due to carbonation than OPC. The ingress of CO2 within the porous mortar matrix is a diffusion controlled process. Subsequent chemical reaction between CO2 and cement hydration products (mostly calcium hydroxide [CH] and calcium silicate hydrate [CSH]) results in degradation of cement based materials. CH offers the buffering capacity against carbonation in hydrated cements. Partial substitution of OPC with pozzolanic materials however decreases the amount of CH in hydrated blended cements. Therefore, low amounts of CH in hydrated blended cements make them more susceptible to degradation as a result of carbonation compared to OPC. The magnitude of carbonation affects the service life of cement based structures significantly. It is therefore apparent that sufficient attention is given to carbonation process in order to ensure resilient cementitious structures. In this paper, an indepth review of the recent advances on carbonation process, factors affecting carbonation resistance, and the effects of carbonation on hardened cement materials have been discussed. In conclusion, carbonation process is influenced by internal and external factors, and it has also been found to have both beneficial and deleterious effects on hardened cement matrix.
    Print ISSN: 2090-9063
    Electronic ISSN: 2090-9071
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...