ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1466-1474 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The energy balance model presented in Part I is applied here to data taken from the literature. Care was taken to choose well-characterized systems to give a true test of the model's predictive character, rather than its ability to curve-fit the data. The effects of concentration, particle size, strain rate, and temperature on the stress-strain and dilatation curves are examined. Good agreement is seen for each of these variables. This predictive approach will allow the design of particulate composites with given mechanical behavior, and analysis of material behavior in various geometries and conditions.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1458-1465 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A method for predicting the highly nonlinear stress-strain behavior and dilatation induced by cavitation of highly filled particulate composites from constituent properties has been developed. The approach presented uses a variation of linear elasticity throughout and has no adjustable parameters, unlike the methods currently used, which require large numbers of fitting factors and complicated nonlinear analyses. An energy balance derived from the first law of thermodynamics calculates critical strain values at which filler particles will debond when subjected to deformation. Repeated calculations of critical strain values using re-evaluated material properties accounting for the damage caused by debonding give very nonlinear stress-strain and dilatation curves. Experimentally observed dependencies on particle size, filler concentration, adhesion, and matrix and filler properties are correctly predicted. The method can be generalized for any state of stress or particle shape. Comparisons of experimental data with the model results give good agreement.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...