ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2014-12-06
    Description: Background: AML is a heterogeneous disease with various chromosomal aberrations. The karyotype at diagnosis provides important prognostic information that influences therapy and outcome, and patients (pts) with complex karyotype (CK) have generally a poor outcome. TP53 is the most frequently mutated gene in human tumors. The reported TP53 mutation rate in AML is low (2.1%). In contrast, the incidence of TP53 mutations in AML with a complex aberrant karyotype is higher (69-78%). Aims: To investigate the frequency, the types of mutations, the associated cytogenetic abnormalities and the prognostic role of TP53 mutations in adult AML pts, we focused the screening on subgroups of AML with chromosome abnormalities. Patients and Methods: 886 AML patients were analysed at the Seràgnoli Institute of Bologna between 2002 and 2013 for morphology, immunophenotype, cytogenetic and for a panel of genetic alterations (FLT3, NPM, WT1, CBF fusion transcripts, DNMT3A, IDH1, IDH2, etc). Of these, 172 adult AML pts were also examined for TP53 mutations using several methods, including Sanger sequencing, Next-Generation deep-Sequencing (Roche) and HiSeq 2000 (Illumina) platform (35/172 pts). 40 samples were genotyped with Genome-Wide Human SNP 6.0 arrays or with CytoScan HD Array (Affymetrix) and analysed by Nexus Copy Number™ v7.5 (BioDiscovery). Results: Of the 886 AML patients beforehand analysed, 172 pts were screened for TP53 mutations and were correlated with cytogenetic analysis (excluding 15 pts where the karyotype was not available). 1. Fifty-two pts (30,2%) have 3 or more chromosome abnormalities, i.e. complex karyotype; 2. 71 (41,3%) presented one or two cytogenetic abnormalities (other-AML) and 3. 34 pts (19,8%) have normal karyotype. Sanger sequencing analysis detected TP53 mutations on 29 patients with 36 different types of mutations; seven pts (4%) have 2 mutations. Mostly (23/29) of the TP53 mutated pts (79.3%) had complex karyotype while only 6/29 mutated pts have “no CK” (21% and 3% of the entire screened population). Overall, between pts with complex karyotype, TP53 frequency is 44.2%. Regarding the types of the TP53 alterations, 32 were deleterious point mutations (http://p53.iarc.fr/TP53GeneVariations.aspx) and 4 deletions. Forty pts were also analysed for Copy Number Alterations (CNAs) by Affymetrix SNP arrays: several CNAs were found ranged from loss or gain of complete chromosome (chr) arms to focal deletions and gains targeting one or few genes involving macroscopic (〉1.5 Mbps), submicroscopic genomic intervals (50 Kbps - 1.5 Mbps) and LOH (〉5 Mbps) events. Of relevance, gains located on chr 8 were statistically associated with TP53 mutations (p = 0.001). Seven genes are included in these regions (RGS20, TCEA1, LINC01299, ARMC1, MTFR1, RAD54B, KIAA1429). In addition to the trisomy of the chr 8, others CNAs, located on other chromosomes are significantly associated (p = 0.05) with TP53 mutations: loss of chr 5q, chr 3 (p22.3), chr 12 (p12.3) and the gain of chr 17 (p11.2), chr 16 (p11.2-11.3) and chr 14 (q32.33). The zinc finger gene ZNF705B, implicated in the regulation of transcription was the most differentially associated gene (gain). WES analysis was done in 37 pts, 32 TP53 were wt while 5 pts were TP53 mutated: of importance, CDC27, PLIN4 and MUC4 were found also mutated in 3 out of 5 TP53 mutated (60%). Clinical outcome: as previously reported, alterations of TP53 were significantly associated with poor outcome in terms of both overall survival and disease free-survival (P 〈 0.0001). Conclusions: Our data demonstrated that TP53 mutations occur in 16.86% of AML with a higher frequency in the subgroup of complex karyotype AML (p〈 0.0001–Fischer’s exact test). Since TP53 mutations have predicted to be deleterious and significantly correlated with prognosis, TP53 mutation screening should be recommended at least in complex karyotype AML pts. Furthermore, although further studies in larger numbers of patients are needed, the gain of chromosome 8 was observed to be significantly associated to TP53 mutations pts. Supported by: ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures Martinelli: Novartis: Speakers Bureau; Bristol Mayers Squibb: Speakers Bureau; Pfizer: Speakers Bureau.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-06
    Description: Background: AML is a heterogeneous disease. The karyotype provides important prognostic information that influences therapy and outcome. Identification of AML patients (pts) with poor prognosis such as those with complex karyotype (CK) has great interest and impact on therapeutic strategies. TP53 is the most frequently mutated gene in human tumours. TP53 mutation rate in AML was reported to be low (2.1%), but the incidence of TP53 mutations in AML with a complex aberrant karyotype is still debated. Aims: To investigate the frequency of TP53 mutations in adult AML pts, the types of mutations, the associations with recurrent cytogenetic abnormalities and their relationship with response to therapy, clinical outcome and finally their prognostic role. To this aim, we focused on a subgroup of TOT/886 AML pts treated at the Serˆgnoli Institute of Bologna between 2002 and 2013. Patients and Methods: 886 AML patients were analysed for morphology, immunophenotype, cytogenetic and for a panel of genetic alterations (FLT3, NPM1, DNMT3A, IDH1, IDH2 mutations, WT-1 expression, CBF fusion transcripts). Of these, 172 adult AML pts were also examined for TP53 mutations using several methods, including Sanger sequencing, Next-Generation Deep-Sequencing (Roche) and HiSeq 2000 (Illumina) platform. 40 samples were genotyped with Genome-Wide Human SNP 6.0 arrays or with CytoScan HD Array (Affymetrix) and analysed by Nexus Copy Numberª v7.5 (BioDiscovery). Results: Of the 886 AML patients, 172 pts were screened for TP53 mutations. Sanger sequencing analysis detected TP53 mutations in 29/172 AML patients with 36 different types of mutations; seven pts (4%) had 2 mutations. At diagnosis, the median age of TP53 mutated and wild type patients was 68 years (range 42-86), and 65 years (range 22-97) respectively. Median WBC count was 8955/mmc (range 580-74360/mmc) and 1240/mmc (range 400-238000/mmc). Conventional cytogenetics showed that: a) 52 pts (30,2%) had 3 or more chromosome abnormalities, i.e. complex karyotype; b) 71 (41,3%) presented with one or two cytogenetic abnormalities (other-AML); c) 34 pts (19,8%) had normal karyotype. Most of the TP53 mutated pts (23/29, 79.3%) had complex karyiotype, whereas only 6/29 mutated pts had “no complex Karyotype” (21% and 3% of the entire screened population, respectively). Overall, TP53 frequency was 44.2% in the complex karyotype group, suggesting a pathogenetic role of TP53 mutations in this subgroup of leukemias. As far as the types of TP53 alterations regards, the majority of mutations (32) were deleterious.. Copy Number Alterations (CNAs) analysis performed on 40 cases by Affymetrix SNP arrays showed the presence of several CNAs in all cases: they ranged from loss or gain of the full chromosome (chr) arm to focal deletions and gains targeting one or few genes involving macroscopic (〉1.5 Mbps), submicroscopic genomic intervals (50 Kbps - 1.5 Mbps) and LOH (〉5 Mbps) events. Of relevance, gains located on chr 8 were statistically associated with TP53 mutations (p = 0.001). In addition to the trisomy of the chr 8, others CNAs, located on chromosomes 5q, 3, 12, 17 are significantly associated (p = 0.05) with TP53 mutations. WES analysis was performed in 37 pts: 32 TP53 were wt while 5 pts were TP53 mutated. Interestingly, TP53 mutated patients had more incidence of complex karyotype, more aneuploidy state, more number of somatic mutations (median mutation rate 30/case vs 10/case, respectively). Regarding the clinical outcome, as previously reported (Grossmann V. et Al. Blood 2013), alterations of TP53 were significantly associated with poor outcome in terms of both overall survival (median survival: 4 and 31 months in TP53 mutated and wild type patients, respectively; p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-02
    Description: Background: Adult B-ALL patients still have a dismal prognosis, due to a high incidence of relapse even after allogenic SCT. Safety and efficacy of Blinatumomab, an anti CD3-CD19 Bite antibody, has been demonstrated both in MRD positive patients and in relapsed/refractory (R/R) setting. Aim: To evaluate safety profile and efficacy of Blinatumomab, obtained through a compassionate use, in a cohort of 18 adult patients affected by MRD+ or R/R B-ALL treated at Bologna University. Design: From March 2015 to July 2016, 18 patients received Blinatumomab at the standard dosage (9 mcg/d x 7 days, 28 mcg/d x 21 days) in 28-days courses. All the patients were hospitalized to receive the first course of therapy. The following courses, based on the good safety profile of the compound, were administered in outpatient setting. Patients: 18 patients (M/F = 10/8; median age 43, range 18-73) have been treated. Philadelphia (Ph) chromosome was detected in 8/18 patients. 10 patients were MRD+ (5 Ph pos and 5 Ph neg); E2A-PBX1 and MLL-AF4 rearrangements were found in two patients. 8 patients had a R/R disease (3 Ph pos and 5 Ph neg). Median WBC count before starting therapy with Blinatumomab was 5400/mmc (range 500-76500). All the patients had previously received many lines of therapy (median 4, range 1-7). In 4 cases an alloTMO was already performed, and two patients had received two transplants. 12/18 patients were referred to us by other Italian Institutions. All the patients received at least one course of Blinatumomab. In one case three courses were administered; an elderly patient is actually receiving the fifth course. Globally, 32 courses of therapy have been administered (median 2, range 1-5). Bone marrow evaluations, including cytogenetics, molecular biology and immunophenotyping analysis were performed at the beginning of every course of therapy in order to assess patients' disease status. MRD evaluation was assessed through BCR-ABL fusion transcript quantitative analysis in Ph pos ALL patients and Ig rearrangment in Ph negative patients. Monitoring of adverse events was periodically performed. Results: 16/18 patients are evaluable for response, at least to one cycle (one patient died during the first course, one patient is still receiving the first course). 9/16 (56%) patients obtained a CR (7/9 MRD+ and 2/7 R/R). In 7/9 (78%) responders patients a molecular CR was reached, (in 6 patients after the first course, in one case after the second one). 5 responders proceeded to alloBMT and are actually alive in CR (median follow-up after transplant 240 days). In terms of toxicity, one patient developed a grade IV neurological event (mental confusion, tremor), which completely resolved after a transient drug withdrawal. Conclusions: Our results confirm the high rate of response and to Blinatumomab in a poor patients' population, and the good management profile of the compound. Acknowledgments: Work supported by ALN, AIL, AIRC, PRIN, Progetto Regione-Università 2010-12 (L. Bolondi), FP7 NGS-PTL project. Disclosures Soverini: Ariad: Consultancy; Bristol-Myers Squibb: Consultancy; Novartis: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-02
    Description: Introduction PI3P is a key regulator of cell growth, and mediates cell proliferation via PI3K/AKT/mTOR in response to various growth signals. Abnormal activation of genes in its pathway is associated to oncogenic activity and poor Overall Survival (OS). PI3P is also a core activator of autophagy. Which role autophagy plays in cancer is not well established; it can function as a pro-apoptotic mechanism, or it can improve survive to stresses clearing damaged mitochondria and proteins accumulation, preventing apoptosis. Levels and activity of pro-apoptotic and anti-apoptotic proteins, particularly bcl-2 and p53, membrane signaling via mTOR, high levels of cAMP, a complex made by pink/park, promote a switch from apoptotic autophagy toward a mechanism that augment cell resiliency. Our study aims to define the role of PI3P pathways in AML, and to establish if autophagy could reduce the patients' chance to respond to induction, and to worsen OS. Methods We analyzed 208 consecutive newly diagnosed non M3 AML patients, screened for TP53, FLT3, NMP1, IDH1, IDH2, and DNMT3A mutations. Remission status was assessed with bone marrow biopsy. In all the patients, we perform Microarray-based Comparative Genomic Hybridization with Affymetrix SNP array 6.0 or Cytoscan HD; we perform Whole Exome Sequencing (WES)in 80/208 patients. Survival data were collected prospectively, with a median follow-up of 18 months. Survival analysis was performed with Kaplan Meyer method using log rank test. Univariate and multivariable regression and Cox Hazard Ratio(HR) model was performed. Correlation between variables was assessed with Fisher's exact test. Results We analyzed 4 pathways (Table 1); we selected genes in pathways basing on literature and GO data. Alterations in these pathways involved 103/209 patients (48%). PI3K/AKT/mTOR pathway alterations (both gains or losses) were shown to confer worst OS (p = .035, Figure 1a) when compared with unaltered patients; events in these pathways did not affect therapy response. Autophagy pathway alterations were shown to confer worst OS (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-06
    Description: Whole exome and transcriptome sequencing (WES and RNAseq) technologies are able to provide a comprehensive analysis of the genomic aberrations acquired by malignant cells, of their synergistic effects and functional consequences. In particular, RNAseq enables the detection of gene fusions originating from rare chromosomal translocations that have been involved in the pathogenesis of Acute Myeloid Leukemia (AML). We performed WES and RNAseq of AML patients to identify novel genetic abnormalities playing a causative role in leukemia development. We collected bone marrow or peripheral blood samples of 31 patients. Sequencing was performed using the Illumina Hiseq2000 platform. WES raw data were analysed with Whole-Exome sequencing Pipeline web tool for variants detection (WEP). The presence of gene fusions was assessed in RNAseq data with deFuse and Chimerascan. Selected genes fusions and variants were validated by Sanger sequencing. By RNAseq we identified a rare gene fusion transcript involving the BCL11B gene, which been previously suggested to play an oncogenic role in AML. The gene encodes for a zinc-finger protein participating to chromatin remodelling and regulating the differentiation and apoptosis of hematopoietic cells. The fusion was identified in a patient with poorly differentiated leukemia phenotype and unfavourable karyotypic abnormalities: 46,XX, t(2;14)(q21;q32), t(11;12)(p15;q22), who received standard chemotherapy, underwent allogeneic bone marrow transplantation and is currently in complete remission. Differently from previous data, the BCL11B translocation was associated neither with FLT3-ITD nor DNMT3A mutations. WES analysis revealed mutations in the TET2 and WTAP genes, which are known to act as co-players in the leukemic transformation. The exome data of our AML cohort identified neither INDELs nor nonsynonymous mutations in the BCL11Bgene, suggesting that the oncogenic function of BCL11B is activated by chromosomal translocations. Gene expression profiling showed a 4-fold upregulation of BCL11B transcript in the patient’s blasts, compared to 53 AML samples with no chromosomal aberrations in the 14q32 region, according to cytogenetic analysis. The increased expression of BCL11B was associated with an upregulation of potential targets including the antiapoptotic protein SPP1. Our data suggest that chromosomal translocations involving the BCL11B gene are rare events in AML and associate with somatic mutations in the malignant transformation of myeloid lineage cells, potentially by altering the differentiation and apoptotic processes. Future studies will investigate putative fusion partners of BCL11Band elucidate the biological consequences of its upregulation in AML pathogenesis. The results highlight the molecular heterogeneity of AML and the need for high-resolution sequencing analysis of leukemic samples at diagnosis in order to tailor personalized therapies. Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-06
    Description: Myelodisplastic syndromes (MDS) and Acute Myeloid Leukemia (AML) are a group of diseases of the elderly that initiates in a hematopoietic stem cell and are characterized by clonal hematopoiesis and uncertain prognosis, mostly due to cytogenetic background. In both diseases, 5-Azacitidine (5-Aza) has been successful, inducing prolonged survival and delayed AML evolution. To identify the genes mostly predictive of treatment response, we use high-throughput genomic analysis (SNP arrays and/or NGS-RNA-seq and/or NGS-WES and/or GEP) in azacitidine-sensitive and resistant MDS/AML patients. NGS-WES or RNA seq HiSeq 2000 (Illumina) was positively done in 35/214 AML samples (16%), GEP (GeneChip Human Transcriptome Array 2.0, Affymetrix Inc.) was performed in 65/214 AML samples (30%). SNPs arrays (CytoScan HD Array, Affymetrix Inc.) was done in 125/214 AML samples (58%) and 18/32 MDS samples (56%) at diagnosis, then analyzed by Chromosome Analysis Suite (ChAS) v1.2 (Affymetrix Inc.), Nexus Copy Number™ v7.5 (BioDiscovery) and GeneGo MetaCore™ software. We treated 246 adult patients (pts) with MDS or AML: 214 pts were AML and 32 were MDS with a median age of 59 and 70 years, respectively. Forty-five pts were treated with 5-Aza (32 MDS / 13 AML), while 201 AML were treated with conventional chemotherapy. Forty-five MDS/AML pts were treated with at least one complete cycle of 5-Aza (75 mg/sqm/daily). SNP arrays was done in 22/45 (49%), 13 pts were defined “insensitive/resistant”, ie. never achieving clinical complete remission (CCR) and 9 were defined “sensitive”, ie. all of them obtaining CCR. Copy Number Alterations (CNAs) ranged from loss or gain of complete chromosome (chr) arms to focal deletions and gains targeting one or few genes involving macroscopic (〉1.5 Mbps), submicroscopic genomic intervals (50 Kbps - 1.5 Mbps) and LOH (〉5 Mbps) events. Macroscopic CNAs affecting a complete chromosome or its arms were detected in 5 of 22 pts (23%), while classical cytogenetic was able to detect only two cases of trisomy 8 (9%), suggesting superiority of SNPs array for CNAs identifications. Microscopic CNAs abnormalities were detected in all of the patients affecting all the chromosomes. Of interest, some of them were located on chr 2, 3, 4, 5, 7, 8, 11, 12, 15, 17, 20, X, and were involved genes such as: NPM1, CTNNA1, IRF1, RPS14, SPARC, CBL, ETV6, EZH2, CUX1, CDC25C, EGR1, RUNX1, BRAF, ASXL1, ZRSR2, PHF6, BCOR, CDC25C, EGR1, IRAK1 in loss; RAD21, JAK2, KIT, ZRSR2, PHF6, BCOR, IRAK1 in gain; SIRPB1 both in loss and gain. Moreover we found in LOH these genes: NF1, GATA2, FADD, IDH2, SF3B1, BCOR, PHF6, ZRSR2, STAG2, KDM6A, ATRX, IRF1, NPM1, CBL, CTNNA1, EGR1, IRAK1. Chromosomic aberrations disease-related are more statistically frequent on pts “insensitive” versus pts. “sensitive” (64% vs. 35%) (p≤0.01). Moreover we found that from the median of chromosomic alterations lenghts (in kbp) the group of “insensitive” MDS/AML patients to 5-Aza therapy present more gains and losses than “sensitive” ones. By Nexus Copy Number software, we identify 137 genes highly differentially gain (SIRPB1 and KIT with p ≤ 0.05) or loss (SIRPB1, LCE1C, BCAS1, EXD3 with p ≤ 0.05) or LOH between “insensitive” versus “sensitive” to 5-Aza (p ≤ 0.05). Among these genes, we focused on SIRPB1 (cytoband 20p13, 56Kbps), since it was loss on 14/22 (64%) “insensitive” pts (p=0,023) and gain on 7/22 (70%) “sensitive” ones with a significantly (p=0,0324), respectively. SIRPB1 common deletion region goes from 1571 to 1598 (27 kbps) and common amplified region goes from 1561 to 1591 (30 kbps). By NGS-WES we analyzed 35/214 (16%) AML samples at diagnosis and we searched for point mutations, insertion/deletion or other abnormalities, involved in biomarkers of sensitivity/refractory to 5-Aza or chemoteraphy. We found mutations in SF3B1, NPM1, CBL, RUNX1, BCOR, KIT, GATA2, IDH2, KDM6A, KIAA1324L, PRIM2, RRN3, APOBR and again in SIRPB1 an heterozigosity frameshift deletion (c. 388delC; p. H130fs) in exone 2 in a AML pts with normal karyotype. By GEP we further analyzed 48/214 (22%) AML samples for SIRPB1 in order to correlate and confirm the expression or loss of expression of these genes, in correlation with 5-Aza response. We conclude that SIRPB1 is a promising marker of response to 5-Aza treatment in MDS and AML. Acknowledgments: ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi), FP7NGS-PTL project. Celgene ITA–VZ–MDS–PI-0298 GRANT-ITA-002 Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-06
    Description: Acute Myeloid Leukemia (AML) is a heterogeneous malignancy characterized by the expansion of myeloid precursor cells with limited or abnormal differentiation capacity. A relatively common event in AML is represented by chromosome gain or loss. Numerical chromosome abnormalities, which define aneuploidy, have a detrimental effect in primary non-malignant cells, since they dramatically reduce cellular fitness. However, evidence suggests that they have a causative role in tumorigenesis and are well tolerated in transformed cells belonging to the myeloid lineage. Aim of the study is to elucidate the pathogenic mechanisms causing and sustaining aneuploidy in AML in order to find novel potential therapeutic targets. A panel of genetic alterations was analyzed on 886 AML cases at Seràgnoli Institute in Bologna between 2002 and 2013. Among them, 31 samples were subjected to whole exome sequencing (WES, Illumina Hiseq2000). Raw data were processed with WES Pipeline web tool for variants detection. Gene expression profiling (GEP, Affymetrix) was performed on bone marrow cells from 49 AML patients at diagnosis with more than 80% blast cells, including 22 aneuploid cases (carrying monosomy, trisomy or a monosomal karyotype) and 27 cases with normal karyotype. The aneuploid status was confirmed by single nucleotide polymorphism (SNP) array. WES analysis of 13 aneuploid and 12 euploid AML cases revealed a significantly higher median value of genetic variants and mutated genes in aneuploid compared with euploid samples (aneuploid vs. euploid: median of variants, 30 vs. 20 (p=0.02) including nonsynonimous single nucleotide variants, frameshift insertions and deletions, stopgains; median of mutated genes, 25 vs. 17 (p=0.05); details will be presented at the meeting). Noticeably, by gene ontology analysis of mutated genes in the aneuploid cohort we observed a strong enrichment in genes regulating cell cycle, including chromosome organization (p=5.4x10-4) and mitotic sister chromatid cohesion (p=6.98x10-4), and chromatin modification (p=1.3x10-4), with most of the variants being not annotated in the COSMIC database. Euploid samples were enriched for mutations affecting genes involved in cytoskeleton (p=1.6x10-3) and metabolic activities (p=1.9x10-3). A number of genes mutated in the aneuploid cases belong to the APCCdc20 complex and localize on chromosomes generally spared by aneuploidy, supporting the key role of the identified aberrations in the molecular mechanisms leading to numerical chromosome abnormalities. Among several mutations predicted as “drivers” by DOTS-Finder tool (CCDC144NL, DNMT3A, GXYLT1, MESP1, TPRX1,TPTE, ZNF717), we defined some candidates involved in cell cycle regulation and DNA replication. Functional analysis are ongoing. Furthermore, a tumor suppressor function was associated with mutated genes involved in the DNA repair process. In our WES analysis, we identified a subgroup of genes linked to DNA damage response, including TP53, which are preferentially mutated in the aneuploid cohort. Since P53 is a limiting-factor in aneuploidy-induced tumorigenesis, we analyzed the mutational status in a larger cohort of AML patients by Next Generation sequencing (NGS) and Sanger sequencing. Interestingly, we identified TP53 mutations in 15/58 aneuploid vs. 1/36 euploid cases (p=3.8x10-3). Finally, differential expression of genes involved in DNA damage and integrity checkpoints was identified by GEP of aneuploid and euploid AML samples. Previous evidence showed that loss of the spindle checkpoint gene BUB1B induces aneuploidy and predisposes to tumorigenesis. Our data, obtained by integrated NGS and GEP approaches, support a causal link between mutations in a panel of genes involved in cell cycle control/chromosome organization and aneuploidy in AML. Genetic and transcriptional alterations of genes regulating DNA damage response were detected in our AML cohort, suggesting novel molecular mechanisms for the acquisition and/or maintenance of the aneuploid condition and consequently, of leukemogenesis. The results indicate that the identified genomic aberrations likely drive chromosome gain and/or loss in AML by cooperating with alterations affecting different pathways, in order to overcome the unfitness barrier induced by aneuploidy. Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...