ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: deep subsurface ; marine sediment ; deep biosphere ; ocean crust ; subseafloor sediment ; Methane ; Peru margin ; Hydrogen ; acetogenesis ; sulfate reduction ; microbiology
    Description / Table of Contents: Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth’s subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
    Pages: Online-Ressource (303 Seiten)
    ISBN: 9782889195367
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-11
    Description: Background: The deep-sea hypersaline anoxic basins (DHABs) of the Mediterranean (water depth ~3500 m) are some of the most extreme oceanic habitats known. Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB haloclines and brines, loriciferans are the only metazoan reported to inhabit the anoxic DHAB brines. Our goal was to further investigate metazoan communities in DHAB haloclines and brines. Results: We report observations from sediments of three DHAB (Urania, Discovery, L’Atalante) haloclines, comparing these to observations from sediments underlying normoxic waters of typical Mediterranean salinity. Due to technical difficulties, sampling of the brines was not possible. Morphotype analysis indicates nematodes are the most abundant taxon; crustaceans, loriciferans and bryozoans were also noted. Among nematodes, Daptonema was the most abundant genus; three morphotypes were noted with a degree of endemicity. The majority of rRNA sequences were from planktonic taxa, suggesting that at least some individual metazoans were preserved and inactive. Nematode abundance data, in some cases determined from direct counts of sediments incubated in situ with CellTracker TM Green, was patchy but generally indicates the highest abundances in either normoxic control samples or in upper halocline samples; nematodes were absent or very rare in lower halocline samples. Ultrastructural analysis indicates the nematodes in L’Atalante normoxic control sediments were fit, while specimens from L’Atalante upper halocline were healthy or had only recently died and those from the lower halocline had no identifiable organelles. Loriciferans, which were only rarely encountered, were found in both normoxic control samples as well as in Discovery and L’Atalante haloclines. It is not clear how a metazoan taxon could remain viable under this wide range of conditions. Conclusions: We document a community of living nematodes in normoxic, normal saline deep-sea Mediterranean sediments and in the upper halocline portions of the DHABs. Occurrences of nematodes in mid-halocline and lower halocline samples did not provide compelling evidence of a living community in those zones. The possibility of a viable metazoan community in brines of DHABs is not supported by our data at this time.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-18
    Description: Effect of oxygen minimum zone formation on communities of marine protists The ISME Journal 6, 1586 (August 2012). doi:10.1038/ismej.2012.7 Authors: William Orsi, Young C Song, Steven Hallam & Virginia Edgcomb
    Keywords: protestsdiversityanoxicoxygen minimum zone18S rRNA approach
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer Nature
    Publication Date: 2019
    Electronic ISSN: 2058-5276
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-19
    Description: Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin The ISME Journal 8, 2478 (December 2014). doi:10.1038/ismej.2014.100 Authors: Maria G Pachiadaki, Michail M Yakimov, Violetta LaCono, Edward Leadbetter & Virginia Edgcomb
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-09
    Description: Background: Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Results: Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Conclusions: Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The phylogenetic position of the trichomonad, Histomonas meleagridis was determined by analysis of small subunit rRNAs. Molecular trees including all identified parabasalid sequences available in data bases were inferred by distance, parsimony, and likelihood methods. All reveal a close relationship between H. meleagridis, and Dientamoeba fragilis. Moreover, small subunil rRNAs of both amoeboid species have a reduced G + C content and increased chain length relative to other parabasalids. Finally, the rRNA genes from H. meleagridis and D. fragilis share a recent common ancestor with Tritrichomonas foetus, which exhibits a more developed cytoskeleton. This indicates that Histomonas and Dientamoeba secondarily lost most of the typical trichomonad cytoskeletal structures and hence, do not represent primitive morphologies. A global phylogeny of parabasalids revealed significant discrepancies with morphology-based classifications, such as the polyphyly of most of the parabasalid families and classes included in our study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . We determined small subunit ribosomal DNA sequences from three parabasalid species, Trichomitus batrachorum strain R105, Tetratrichomonas gallinarum, and Pentatrichomonas hominis belonging to the Trichomonadinae subfamily. Unrooted molecular phylogenetic trees inferred by distance, parsimony, and likelihood methods reveal four discrete clades among the parabasalids. The Trichomonadinae form a robust monophyletic group. Within this subfamily T. gallinarum is closely related to Trichomonas species as supported by morphological data, with P. hominis and Pseudotrypanosoma giganteum occupying basal positions. Our analysis does not place T. batrachorum within the Trichomonadinae. Trichomitus batrachorum (strains R105 and BUB) and Hypotrichomonas acosta form a well-separated cluster, suggesting the genus Trichomitus is polyphyletic. The emergence of T. batrachorum precedes the Trichomonadinae-Tritrichomonadinae dichotomy, emphasizing its pivotal evolutionary position among the Trichomonadidae. A third cluster unites the Devescovinidae and the Calonymphidae. The fourth clade contains the three hypermastigid sequences from the genus Trichonympha, which exhibit the earliest emergence among the parabasalids. The addition of these three new parabasalid species did not however resolve ambiguities regarding the relative branching order of the parabasalid clades. The phylogenetic positions of Tritrichomonas foetus, Monocercomonas sp., Dientamoeba fragilis, and the unidentified Reticulitermes flavipes gut symbiont 1 remain unclear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 45 (2003), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The prokaryotic community inhabiting the deep subsurface sediments in the Forearc Basin of the Nankai Trough southeast of Japan (ODP Site 1176) was analyzed by 16S rDNA sequencing. Sediment samples from 1.15, 51.05, 98.50 and 193.96 m below sea floor (mbsf) harbored highly diverse bacterial communities. The most frequently retrieved clones included members of the Green non-sulfur bacteria whose closest relatives come from deep subsurface environments, a new epsilon-proteobacterial phylotype, and representatives of a cluster of closely related bacterial sequences from hydrocarbon- and methane-rich sediments around the world. Archaeal clones were limited to members of the genus Thermococcus, and were only obtained from the two deepest samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...