ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-11
    Electronic ISSN: 2643-1564
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2017-11-24
    Description: Topology sheds new light on the emergence of unidirectional edge waves in a variety of physical systems, from condensed matter to artificial lattices. Waves observed in geophysical flows are also robust to perturbations, which suggests a role for topology. We show a topological origin for two well-known equatorially trapped waves, the Kelvin and Yanai modes, owing to the breaking of time-reversal symmetry by Earth’s rotation. The nontrivial structure of the bulk Poincaré wave modes encoded through the first Chern number of value 2 guarantees the existence of these waves. This invariant demonstrates that ocean and atmospheric waves share fundamental properties with topological insulators and that topology plays an unexpected role in Earth’s climate system.
    Keywords: Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-28
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-10
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-29
    Description: The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e. the tendency to reach the gravest vertical mode. The peculiar role of the β} effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing β} increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropization may be partially parameterized using the Rhines scale 2lrmpi E 0 1 4 β} 1/ 2 . As this parameter decreases ( β} increases) then barotropization can progress further, because the β; term provides enstrophy to each layer. However, if the β effect is too large then the statistical mechanical predictions fail and wave dynamics prevent complete barotropization. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-01
    Description: Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a long-standing problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile. Assuming random evolution through turbulent stirring, the theory predicts that the inviscid, adiabatic dynamics is attracted irreversibly towards an equilibrium state characterised by a smooth, stable buoyancy profile at a coarse-grained level, upon which are fine-scale fluctuations of velocity and buoyancy. The convergence towards a coarse-grained buoyancy profile different from the initial one corresponds to an irreversible increase of potential energy, and the efficiency of mixing is quantified as the ratio of this potential energy increase to the total energy injected into the system. The remaining part of the energy is lost into small-scale fluctuations. We show that for sufficiently large Richardson number, there is equipartition between potential and kinetic energy, provided that the background buoyancy profile is strictly monotonic. This yields a mixing efficiency of 0.25, which provides statistical mechanics support for previous predictions based on phenomenological kinematics arguments. In the general case, the cumulative, global mixing efficiency predicted by the equilibrium theory can be computed using an algorithm based on a maximum entropy production principle. It is shown in particular that the variation of mixing efficiency with the Richardson number strongly depends on the background buoyancy profile. This approach could be useful to the understanding of mixing in stratified turbulence in the limit of large Reynolds and Péclet numbers. © 2016 Cambridge University Press?.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-10
    Description: Topology is introducing new tools for the study of fluid waves. The existence of unidirectional Yanai and Kelvin equatorial waves has been related to a topological invariant, the Chern number, that describes the winding of-plane shallow water eigenmodes around band-crossing points in parameter space. In this previous study, the topological invariant was a property of the interface between two hemispheres. Here we ask whether a topological index can be assigned to each hemisphere. We show that this can be done if the shallow water model in the-plane geometry is regularized by an additional odd-viscosity term. We then compute the spectrum of a shallow water model with a sharp equator separating two flat hemispheres, and recover the Kelvin and Yanai waves as two exponentially trapped waves along the equator, with all the other modes delocalized into the bulk. This model provides an exactly solvable example of bulk-interface correspondence in a flow with a sharp interface, and offers a topological interpretation for some of the transition modes described by Iga (J. Fluid Mech., vol. 294, 1995, pp. 367-390). It also paves the way towards a topological interpretation of coastal Kelvin waves along a boundary and, more generally, to an understanding of bulk-boundary correspondence in continuous media. © 2019 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-17
    Description: Oceanic geostrophic turbulence is mostly forced at the surface, yet strong bottom-trapped flows are commonly observed along topographic anomalies. Here we consider the case of a freely evolving, initially surface-intensified velocity field above a topographic bump, and show that the self-organization into a bottom-trapped current can result from its turbulent dynamics. Using equilibrium statistical mechanics, we explain this phenomenon as the most probable outcome of turbulent stirring. We compute explicitly a class of solutions characterized by a linear relation between potential vorticity and streamfunction, and predict when the bottom intensification is expected. Using direct numerical simulations, we provide an illustration of this phenomenon that agrees qualitatively with theory, although the ergodicity hypothesis is not strictly fulfilled. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-31
    Description: Damped internal wave beams in stratified fluids have long been known to generate strong mean flows through a mechanism analogous to acoustic streaming. While the role of viscous boundary layers in acoustic streaming has been thoroughly addressed, it remains largely unexplored in the case of internal waves. Here we compute the mean flow generated close to an undulating wall that emits internal waves in a viscous, linearly stratified two-dimensional Boussinesq fluid. Using a quasi-linear approach, we demonstrate that the form of the boundary conditions dramatically impacts the generated boundary streaming. In the no-slip scenario, the early-time Reynolds stress divergence within the viscous boundary layer is much stronger than within the bulk while also driving flow in the opposite direction. Whatever the boundary condition, boundary streaming is however dominated by bulk streaming at larger time. Using a Wentzel-Kramers-Brillouin approach, we investigate the consequences of adding boundary streaming effects to an idealised model of wave-mean flow interactions known to reproduce the salient features of the quasi-biennial oscillation. The presence of wave boundary layers has a quantitative impact on the flow reversals. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...