ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2018-05-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Springer International Publishing, pp. 75-81, ISSN: 2191-589X
    Publication Date: 2015-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Voigt, Ines; Chiessi, Cristiano Mazur; Prange, Matthias; Mulitza, Stefan; Groeneveld, Jeroen; Varma, Vidya; Henrich, Rüdiger (2015): Holocene shifts of the southern westerlies across the South Atlantic. Paleoceanography, 30(2), 39-51, https://doi.org/10.1002/2014PA002677
    Publication Date: 2023-03-03
    Description: The Southern Westerly Winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here, we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil- Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterwards variability in the SWW is dominated by millennial-scale displacements in the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multi-millennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kwiatkowski, Cornelia; Prange, Matthias; Varma, Vidya; Steinke, Stephan; Hebbeln, Dierk; Mohtadi, Mahyar (2015): Holocene variations of thermocline conditions in the eastern tropical Indian Ocean. Quaternary Science Reviews, 114, 33-42, https://doi.org/10.1016/j.quascirev.2015.01.028
    Publication Date: 2023-03-03
    Description: Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klus, Andrea; Prange, Matthias; Varma, Vidya; Tremblay, L Bruno; Schulz, Michael (2018): Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation. Climate of the Past, 14(8), 1165-1178, https://doi.org/10.5194/cp-14-1165-2018
    Publication Date: 2023-03-03
    Description: Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two abrupt cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (4305-4267 BP and 3046-3018 BP, respectively). They were characterized by substantial surface cooling (-2.3 and -1.8 °C, respectively) and freshening (-0.6 and -0.5 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland, reaching as far as the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic Meridional Overturning Circulation was not substantially affected (weakening by only about 10% and 5%, respectively). The events were triggered by prolonged phases of a positive North Atlantic Oscillation caused substantial changes in the sub-polar ocean circulation and associated freshwater transports, resulting in a weakening of the sub-polar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g. solar or volcanic) forcing.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Seidenglanz, Anne; Prange, Matthias; Varma, Vidya; Schulz, Michael (2012): Ocean temperature response to idealized Gleissberg and de Vries solar cycles in a comprehensive climate model. Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL053624
    Publication Date: 2023-01-13
    Description: The ~90-year Gleissberg and ~200-year de Vries cycles have been identified as two distinctive quasi-periodic components of Holocene solar activity. Evidence exists for the impact of such multi-decadal to centennial-scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid-depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep-water levels. Despite the fact that the two forcing periods differ only by a factor of ~2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200-year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90-year forcing).
    Keywords: Description; File name; File size; File type; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 40 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: AGE; Calculated using error propagation; Center for Marine Environmental Sciences; DEPTH, sediment/rock; ICP-OES, Agilent 700 with autosampler ASX-520; Indian Ocean; KL; MARUM; Piston corer (BGR type); Pulleniatina obliquiloculata, Magnesium/Calcium ratio; SO189/2; SO189/2_039KL; Sonne; SUMATRA; Thermocline temperature, standard deviation; Thermocline water temperature; δ18O, calcite
    Type: Dataset
    Format: text/tab-separated-values, 516 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-27
    Keywords: AGE; Center for Marine Environmental Sciences; DEPTH, sediment/rock; Foraminifera; Indian Ocean; KL; MARUM; Piston corer (BGR type); SO189/2; SO189/2_039KL; Sonne; SUMATRA
    Type: Dataset
    Format: text/tab-separated-values, 56 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steinke, Stephan; Mohtadi, Mahyar; Prange, Matthias; Varma, Vidya; Pittauerova, Daniela; Fischer, Helmut W (2014): Mid- to Late-Holocene Australian–Indonesian summer monsoon variability. Quaternary Science Reviews, 93, 142-154, https://doi.org/10.1016/j.quascirev.2014.04.006
    Publication Date: 2023-06-08
    Description: The Australian-Indonesian monsoon has a governing influence on the agricultural practices and livelihood in the highly populated islands of Indonesia. However, little is known about the factors that have influenced past monsoon activity in southern Indonesia. Here, we present a ~6000 years high-resolution record of Australian-Indonesian summer monsoon (AISM) rainfall variations based on bulk sediment element analysis in a sediment archive retrieved offshore northwest Sumba Island (Indonesia). The record suggests lower riverine detrital supply and hence weaker AISM rainfall between 6000 yr BP and ~3000 yr BP compared to the Late Holocene. We find a distinct shift in terrigenous sediment supply at around 2800 yr BP indicating a reorganization of the AISM from a drier Mid Holocene to a wetter Late Holocene in southern Indonesia. The abrupt increase in rainfall at around 2800 yr BP coincides with a grand solar minimum. An increase in southern Indonesian rainfall in response to a solar minimum is consistent with climate model simulations that provide a possible explanation of the underlying mechanism responsible for the monsoonal shift. We conclude that variations in solar activity play a significant role in monsoonal rainfall variability at multi-decadal and longer timescales. The combined effect of orbital and solar forcing explains important details in the temporal evolution of AISM rainfall during the last 6000 years. By contrast, we find neither evidence for volcanic forcing of AISM variability nor for a control by long-term variations in the El Niño-Southern Oscillation (ENSO).
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...