ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1982-06-01
    Print ISSN: 0196-4321
    Electronic ISSN: 1541-4841
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-06-01
    Print ISSN: 0888-5885
    Electronic ISSN: 1520-5045
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 33 (1994), S. 1623-1630 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 21 (1982), S. 309-314 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Makromolekulare Chemie 62 (1977), S. 163-176 
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Die Gebrauchseigenschaften von leicht vernetztem Polystyrol sind denen von linearem Polystyrol vorzuziehen, wenn höhere thermische Stabilität erforderlich ist. Eine neue Methode zur Darstellung makrovernetzter Polymerer wurde entwickelt, indem Polystyrol mit mono- und difunktionellen Derivaten von p-Xylol, Durol und deren Oligomeren umgesetzt wurde. Das Reaktionssystem bestand aus einem normalen organischen Lösungsmittel wie Essigsiiure oder Butylacetat und einem Katalysator wie H2SO4 oder HClO4: die Reaktionstemperatur wurde zwischen 60 und 100°C variiert. Vernetzungsgrad und thermische Eigenschaften der erhaltenen Netzwerke hängen vom Reaktionssystem. dem Molverhältnis von Polymerem zu Vernetzungsmittel und der Reaktivität der funktionellen Gruppen ab. Die Zeit für die vollständige Vernetzung variiert zwischen 3 und 12 Stunden. Die Bildung von Netzwerken eineitlicher Struktur ohne Kettenverzweigungenzwischen den Netzstellen wird durch die Verwendung von difunktionellen Monomeren erreicht, die die Bildung linearer Polybenzylenketten zwischen den Polystyrolketten begünstigen. Der Einsatz von monofunktionellen Monomeren führt normalerweise zu verzweigtem und schwach vernetztem oder gepfropftem Polystyrol. In beiden Fällen steigen die Bereiche für Tg und Tm bis auf 115 bzw. 350°C. wie sich aus DSC-Messungen ergibt. Diese neue Vernetzungsmethode wurde auch auf Styrol-Copolymere und auf Polymere mit aromatischer Struktur in der Hauptkette angewandt.
    Notes: Slightly crosslinked polystyrene networks are preferable to linear polystyrene in commercial uses where increased thermal properties are favoured. A novel method of production of macrocrosslinked networks has been developed by reaction of polystyrene with mono- and difunctional derivatives of p-xylene, durene and oligomeric chains (n〈10) thereof. The reaction system consists of a common organic solvent such as acetic acid or butyl acetate and a catalyst such as H2SO4 or HClO4; the reaction temperature varies between 60°C and 100°C. The degrees of crosslinking and thermal properties of the produced networks depend on the reaction system, the molar ratio of polymer to crosslinking agent and the reactivity of the functional groups; the gelation time varies between 3-12 hours for a fully crosslinked network. Promotion of the formation of regular structure networks without branches in the chains between crosslinks is achieved by the use of difunctional monomers, which favour the formation of linear polybenzylene chains between the polystyrene chains. Use of monofunctional monomers leads usually to branched and slightly crosslinked or grafted polystyrene. In both cases the regions of Tg and Tm increase up to 115°C and 350°C respectively as judged by DSC analysis. This novel crosslinking method has been also applied to crosslinking of copolymers of polystyrene and polymeric chains with aromatic structure in their backbone chain.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 1241-1247 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new method for the production of polydimethylbenzylenes,$ \rlap{--} [{\rm C}_6 {\rm H}_4 ({\rm CH})_2 {\rm CH}_{\rm 2} \rlap{--} ]_n $, involves the polycondensation of the mono- and dichloromethyl and mono- and diacetoxymethyl derivatives of p-xylene via an acid-catalyzed reaction in anhydrous acetic acid. The reaction of the difunctional derivatives is slower than the reaction of the monofunctional ones, leading to linear, predominantly crystalline, high-melting polymers with molecular weights of 2000-3000. Polycondensation of both monomers under different feed ratios leads to polymers with the same structure, and the monofunctional monomers condense with themselves more favorably than with the difunctional ones. Thus a head-to-head structure is preferred, and crystalline polymers of high structural purity are obtained.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 2567-2579 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Polydimethylbenzylenes, \documentclass{article}\pagestyle{empty}\begin{document}$\rlap{--} [C_6 H_2 (CH_3 )_2 CH_2 \rlap{--} ]_n$\end{document}, have been obtained by polycondensation of the monochloromethyl, acetoxymethyl, and methoxymethyl derivatives of p-xylene, via an acid-catalyzed reaction in anhydrous acetic acid and in 1-nitropropane. In the highly ionizing solvent acetic acid, because of ionic depolymerization, chain growth takes the form of an equilibrating polycondensation, of a maximum number-average molecular weight of 2200. In the noninteracting solvent 1-nitropropane, the molecular weight distribution is more random, and soluble polymers of number-average molecular weight up to 3900 are formed. The polycondensation reaction in 1-nitropropane is also initiated by perchlorate salts, in support of the suggestion of a “hot carbonium ion” propagation mechanism. The results are explained by a cataionic polycondensation reaction, yielding crystalline “living polymers” of high structural purity.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...