ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-06-16
    Description: Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuccato, C -- Ciammola, A -- Rigamonti, D -- Leavitt, B R -- Goffredo, D -- Conti, L -- MacDonald, M E -- Friedlander, R M -- Silani, V -- Hayden, M R -- Timmusk, T -- Sipione, S -- Cattaneo, E -- E.0840/Telethon/Italy -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):493-8. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacological Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408619" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor/biosynthesis/*genetics/metabolism ; Cell Survival ; Cells, Cultured ; Cerebral Cortex/cytology/*metabolism ; Corpus Striatum/cytology/*metabolism/pathology ; Exons ; Hippocampus/cytology/metabolism/pathology ; Humans ; Huntington Disease/*genetics/metabolism/pathology ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Nerve Growth Factors/genetics/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Neurons/*metabolism/pathology ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-18
    Description: Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chi-Hong -- Fallini, Claudia -- Ticozzi, Nicola -- Keagle, Pamela J -- Sapp, Peter C -- Piotrowska, Katarzyna -- Lowe, Patrick -- Koppers, Max -- McKenna-Yasek, Diane -- Baron, Desiree M -- Kost, Jason E -- Gonzalez-Perez, Paloma -- Fox, Andrew D -- Adams, Jenni -- Taroni, Franco -- Tiloca, Cinzia -- Leclerc, Ashley Lyn -- Chafe, Shawn C -- Mangroo, Dev -- Moore, Melissa J -- Zitzewitz, Jill A -- Xu, Zuo-Shang -- van den Berg, Leonard H -- Glass, Jonathan D -- Siciliano, Gabriele -- Cirulli, Elizabeth T -- Goldstein, David B -- Salachas, Francois -- Meininger, Vincent -- Rossoll, Wilfried -- Ratti, Antonia -- Gellera, Cinzia -- Bosco, Daryl A -- Bassell, Gary J -- Silani, Vincenzo -- Drory, Vivian E -- Brown, Robert H Jr -- Landers, John E -- 1R01NS050557/NS/NINDS NIH HHS/ -- 1R01NS065847/NS/NINDS NIH HHS/ -- R01 NS050557/NS/NINDS NIH HHS/ -- RC2 NS070342/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- T32 GM007754/GM/NIGMS NIH HHS/ -- U01 NS052225/NS/NINDS NIH HHS/ -- UL1 TR000454/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 23;488(7412):499-503. doi: 10.1038/nature11280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801503" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/diagnosis/*genetics/metabolism/*pathology ; Animals ; Axons/metabolism/pathology ; Cells, Cultured ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Growth Cones/metabolism ; High-Throughput Nucleotide Sequencing ; Humans ; Jews/genetics ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Motor Neurons/cytology/metabolism ; Mutant Proteins/genetics/*metabolism ; Mutation/*genetics ; Pedigree ; Profilins/*genetics/*metabolism ; Protein Conformation ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-24
    Description: Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cirulli, Elizabeth T -- Lasseigne, Brittany N -- Petrovski, Slave -- Sapp, Peter C -- Dion, Patrick A -- Leblond, Claire S -- Couthouis, Julien -- Lu, Yi-Fan -- Wang, Quanli -- Krueger, Brian J -- Ren, Zhong -- Keebler, Jonathan -- Han, Yujun -- Levy, Shawn E -- Boone, Braden E -- Wimbish, Jack R -- Waite, Lindsay L -- Jones, Angela L -- Carulli, John P -- Day-Williams, Aaron G -- Staropoli, John F -- Xin, Winnie W -- Chesi, Alessandra -- Raphael, Alya R -- McKenna-Yasek, Diane -- Cady, Janet -- Vianney de Jong, J M B -- Kenna, Kevin P -- Smith, Bradley N -- Topp, Simon -- Miller, Jack -- Gkazi, Athina -- FALS Sequencing Consortium -- Al-Chalabi, Ammar -- van den Berg, Leonard H -- Veldink, Jan -- Silani, Vincenzo -- Ticozzi, Nicola -- Shaw, Christopher E -- Baloh, Robert H -- Appel, Stanley -- Simpson, Ericka -- Lagier-Tourenne, Clotilde -- Pulst, Stefan M -- Gibson, Summer -- Trojanowski, John Q -- Elman, Lauren -- McCluskey, Leo -- Grossman, Murray -- Shneider, Neil A -- Chung, Wendy K -- Ravits, John M -- Glass, Jonathan D -- Sims, Katherine B -- Van Deerlin, Vivianna M -- Maniatis, Tom -- Hayes, Sebastian D -- Ordureau, Alban -- Swarup, Sharan -- Landers, John -- Baas, Frank -- Allen, Andrew S -- Bedlack, Richard S -- Harper, J Wade -- Gitler, Aaron D -- Rouleau, Guy A -- Brown, Robert -- Harms, Matthew B -- Cooper, Gregory M -- Harris, Tim -- Myers, Richard M -- Goldstein, David B -- 089701/Wellcome Trust/United Kingdom -- K08 NS075094/NS/NINDS NIH HHS/ -- P01 AG017586/AG/NIA NIH HHS/ -- P01 AG032953/AG/NIA NIH HHS/ -- P50 AG025688/AG/NIA NIH HHS/ -- R37 NS033123/NS/NINDS NIH HHS/ -- R37 NS083524/NS/NINDS NIH HHS/ -- T32 GM007754/GM/NIGMS NIH HHS/ -- TL1 TR001066/TR/NCATS NIH HHS/ -- UL1 TR001067/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1436-41. doi: 10.1126/science.aaa3650. Epub 2015 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA. ; Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA. ; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Duke University School of Medicine, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. ; Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands. ; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland. ; Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK. ; Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands. ; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Universita degli Studi di Milano, Milan 20122, Italy. ; Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. ; Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA. ; Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA. ; Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, Emory University, Atlanta, GA 30322, USA. ; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA. ; Biogen Idec, Cambridge, MA 02142, USA. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA. ; Duke ALS Clinic and Durham VA Medical Center, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. tim.harris@biogenidec.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700176" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Amyotrophic Lateral Sclerosis/*genetics ; Autophagy/*genetics ; Exome/*genetics ; Female ; Genes ; Genetic Association Studies ; *Genetic Predisposition to Disease ; Humans ; Male ; Middle Aged ; Protein Binding ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Risk ; Sequence Analysis, DNA ; Transcription Factor TFIIIA/genetics/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-16
    Description: Defining the role of the Bcl-2 family proteins in Huntington’s disease Cell Death and Disease 4, e772 (August 2013). doi:10.1038/cddis.2013.300 Authors: J Sassone, A Maraschi, F Sassone, V Silani & A Ciammola
    Keywords: mutated huntingtinHuntington’s disease modelsBcl-2 family proteins
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0011-2240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1824-310X
    Keywords: Myotonic dystrophy ; trinucleotide repeats ; sequence analysis ; evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Myotonic dystrophy is due to instability of a [CTG] repeat in the myotonin-protein kinase gene. We have sequenced the complete 3′ untranslated region of this gene which contains the repeat, in seven nonhuman primates. We found that the genomic organisation was conserved, suggesting that this region has important regulatory functions. These data also argue that the human state is derived from a primate ancestor in which the mutational event did not involve the loss of cryptic sequences interrupting or surrounding the repeat, but likely affected only the original length of the repeat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2015-10-23
    Description: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the IT15 gene that encodes the protein huntingtin (htt). Evidence shows that mutant htt causes mitochondrial depolarization and fragmentation, but the underlying molecular mechanism has yet to be clarified. Bax/Bak and BNip3 are pro-apoptotic members of the Bcl-2 family protein whose activation triggers mitochondrial depolarization and fragmentation inducing cell death. Evidence suggests that Bax/Bak and BNip3 undergo activation upon mutant htt expression but whether these proteins are required for mitochondrial depolarization and fragmentation induced by mutant htt is unclear. Our results show that BNip3 knock-out cells are protected from mitochondrial damage and cell death induced by mutant htt whereas Bax/Bak knock-out cells are not. Moreover, deletion of BNip3 C-terminal transmembrane domain, required for mitochondrial targeting, suppresses mitochondrial depolarization and fragmentation in a cell culture model of HD. Hence, our results suggest that changes in mitochondrial morphology and transmembrane potential, induced by mutant htt protein, are dependent and linked to BNip3 and not to Bax/Bak activation. These results provide new compelling evidence that underlies the molecular mechanisms by which mutant htt causes mitochondrial dysfunction and cell death, suggesting BNip3 as a potential target for HD therapy.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Fogh, I., Ratti, A., Gellera, C., Lin, K., Tiloca, C., Moskvina, V., Corrado, L., Soraru, G., Cereda, C., Corti, S., Gentilini, D., Calini, D., Castellotti, B., Mazzini, L., Querin, G., Gagliardi, S., Del Bo, R., Conforti, F. L., Siciliano, G., Inghilleri, M., Sacca, F., Bongioanni, P., Penco, S., Corbo, M., Sorbi, S., Filosto, M., Ferlini, A., Di Blasio, A. M., Signorini, S., Shatunov, A., Jones, A., Shaw, P. J., Morrison, K. E., Farmer, A. E., Van Damme, P., Robberecht, W., Chio, A., Traynor, B. J., Sendtner, M., Melki, J., Meininger, V., Hardiman, O., Andersen, P. M., Leigh, N. P., Glass, J. D., Overste, D., Diekstra, F. P., Veldink, J. H., van Es, M. A., Shaw, C. E., Weale, M. E., Lewis, C. M., Williams, J., Brown, R. H., Landers, J. E., Ticozzi, N., Ceroni, M., Pegoraro, E., Comi, G. P., D'Alfonso, S., van den Berg, L. H., Taroni, F., Al-Chalabi, A., Powell, J., Silani, V., the SLAGEN Consortium and Collaborators, Brescia Morra, Filla, Massimo, Marsili, Viviana, Puorro, La Bella, Logroscino, Monsurro, Quattrone, Simone, Ahmeti, Ajroud-Driss, Armstrong, Birve, Blauw, Bruijn, Chen, Comeau, Cronin, Soraya, Grab, Groen, Haines, Heller, Huang, Hung, ITALSGEN Consortium, Jaworski, Khan, Langefeld, Marion, McLaughlin, Miller, Mora, Pericak-Vance, Rampersaud, Siddique, Siddique, Smith, Sufit, Topp, Vance, van Vught, Yang, Zheng
    Oxford University Press
    Publication Date: 2014-03-20
    Description: Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (~90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 x 10 –8 ; OR 0.82) that was validated when combined with genotype data from a replication cohort ( P = 8.62 x 10 –9 ; OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 x 10 –9 ; OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as ~12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-01
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...