ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-03-19
    Description: The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarraf, Shireen A -- Raman, Malavika -- Guarani-Pereira, Virginia -- Sowa, Mathew E -- Huttlin, Edward L -- Gygi, Steven P -- Harper, J Wade -- CA139885/CA/NCI NIH HHS/ -- GM067945/GM/NIGMS NIH HHS/ -- GM070565/GM/NIGMS NIH HHS/ -- GM095567/GM/NIGMS NIH HHS/ -- R01 GM067945/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- R01 GM095567/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):372-6. doi: 10.1038/nature12043. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila Proteins/metabolism ; Drosophila melanogaster/metabolism ; Humans ; *Membrane Potential, Mitochondrial ; Mice ; Mitochondria/chemistry/*metabolism ; Mitochondrial Membranes/*metabolism ; Mitochondrial Proteins/*metabolism ; Protein Kinases/metabolism ; Proteome/*metabolism ; Proteomics ; Ubiquitin-Protein Ligases/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-19
    Description: Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guarani, Virginia -- Deflorian, Gianluca -- Franco, Claudio A -- Kruger, Marcus -- Phng, Li-Kun -- Bentley, Katie -- Toussaint, Louise -- Dequiedt, Franck -- Mostoslavsky, Raul -- Schmidt, Mirko H H -- Zimmermann, Barbara -- Brandes, Ralf P -- Mione, Marina -- Westphal, Christoph H -- Braun, Thomas -- Zeiher, Andreas M -- Gerhardt, Holger -- Dimmeler, Stefanie -- Potente, Michael -- R01 DK088190/DK/NIDDK NIH HHS/ -- R01 GM093072/GM/NIGMS NIH HHS/ -- R01DK088190-01A1/DK/NIDDK NIH HHS/ -- R01GM093072-01/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 May 12;473(7346):234-8. doi: 10.1038/nature09917. Epub 2011 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21499261" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Endothelial Cells/cytology/*enzymology ; *Gene Expression Regulation ; Gene Knockout Techniques ; Gene Silencing ; HEK293 Cells ; Humans ; Mice ; Mutation ; Receptor, Notch1/metabolism ; Receptors, Notch/*metabolism ; Signal Transduction/*physiology ; Sirtuin 1/*genetics/*metabolism ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-02-23
    Description: JmjC domain-containing proteins play a crucial role in the control of gene expression by acting as protein hydroxylases or demethylases, thereby controlling histone methylation or splicing. Here, we demonstrate that silencing of Jumonji domain-containing protein 6 (Jmjd6) impairs angiogenic functions of endothelial cells by changing the gene expression and modulating the splicing of the VEGF-receptor 1 (Flt1). Reduction of Jmjd6 expression altered splicing of Flt1 and increased the levels of the soluble form of Flt1, which binds to VEGF and placental growth factor (PlGF) and thereby inhibits angiogenesis. Saturating VEGF or PlGF or neutralizing antibodies directed against soluble Flt1 rescued the angiogenic defects induced by Jmjd6 silencing. Jmjd6 interacts with the splicing factors U2AF65 that binds to Flt1 mRNA. In conclusion, Jmjd6 regulates the splicing of Flt1, thereby controlling angiogenic sprouting.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...