ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2017-10-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-21
    Description: The hallmark of great earthquakes in the Mediterranean is the 21 July 365 CE earthquake and tsunami that destroyed cities and killed thousands of people throughout the Eastern Mediterranean. This event is intriguing because most Mediterranean subduction forearcs exhibit pervasive crustal extension and minimal definitive evidence exists for great subduction megathrust earthquakes, consistent with weak seismic coupling. This conundrum has led many to favor rupture of a previously unrecognized upper plate splay fault south of Crete in an M w 8.3–8.5 earthquake, uplifting a Cretan Holocene paleoshoreline by up to 9 m. Similar source mechanisms have been adapted for the region, which are commonly used for seismic and tsunami hazard estimation. We present an alternative model for Holocene paleoshoreline uplift and the 365 CE tsunami that centers on known active normal fault systems offshore of western and southwestern Crete. We use new and published radiocarbon dates and historical records to show that uplift of the Cretan paleoshoreline likely occurred during two or more earthquakes within 2–3 centuries. Visco‐elastic dislocation modeling demonstrates that the rupture of these normal faults fits observed data as well as reverse fault models but requires reduced slip and lower cumulative earthquake energy release (∼M w 7.9). Tsunami modeling shows that normal‐fault ruptures produce strong tsunamis that better match historical reports than a hypothetical reverse fault. Our findings collectively favor the interpretation that damaging earthquakes and tsunamis in the Eastern Mediterranean can originate on normal faults, highlighting the potential hazard from tsunamigenic upper plate normal fault earthquakes.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-23
    Description: The subsidence history of forearc and back-arc basins reflects the relationship between subduction kinematics, mantle dynamics, magmatism, crustal tectonics, and surface processes. The distinct contributions of these processes to the topography variations of active margins during subduction initiation, oceanic subduction, and collision are less understood. We ran 2D elasto-visco-plastic numerical models including surface and hydration processes. The models show the evolution of wedge-top and retro-forearc basins on the continental overriding plate, separated by a forearc high. They are affected by repeated compression and extension phases. Compression-induced subsidence is recorded in the syncline structure of the retro-forearc basin from the onset of subduction. The 2–4 km upper plate negative residual topography is produced by the gradually steepening slab, which drags down the upper plate. Trench retreat leads to slab unbending and decreasing slab dip angle that leads to upper plate trench-ward tilting. Back-arc basins are either formed along inherited weak zones at a large distance from the arc or are created above the hydrated mantle wedge originating from arc rifting. Back-arc subsidence is primarily governed by crustal thinning that is controlled by slab roll-back and supported by the underlying mantle convection. High subduction and mantle convection velocities result in large wavelength negative dynamic topography. Collision and continental subduction are linked to the uplift of the forearc basins; however, the back-arc records ongoing extension during a soft collision. During the hard collision, both the forearc and back-arc basins are ultimately affected by the compression. Our modeling results provide insights into the evolution of Mediterranean subduction zones.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-15
    Description: Most subduction zones on Earth are oblique, i.e., the angle between the plate convergence vector and the trench notably differs from 90°. Therefore, modeling and understanding the strain partitioning in the forearc, the development of extensional basins in the back-arc region and the diachronous transition from subduction to collision require a 3D approach. Here, we assess how oblique oceanic subduction and subsequent collision and associated mantle flow around the subducted lithosphere control the thermo-mechanical evolution of active margins. We conducted a series of 3D thermo-mechanical subduction models and discuss the influence of different subduction obliquity angles, the role of mantle flow variations and their connection with sediment transport and back-arc deformation. Numerical models are complemented by scaled analogue models to visualize the mantle flow evolution. Oceanic subduction along an oblique trench results in asymmetric mantle return flow leading to the gradual decrease of the subduction obliquity angle driven by the gradual rotation of the lower plate and the along-trench variation of slab retreat. This creates laterally variable subduction velocities and slab geometries. Back-arc extension is governed by both the toroidal mantle flow along the slab edges and by the oblique subduction induced lateral mantle flow gradient. The diachronous transition from oceanic to continental subduction and collision facilitates the laterally variable trench advance and retreat and back-arc deformation. Tectonically induced lateral sediment transport in the trench and along the subduction interface decreases its strength and viscosity and can alter subduction velocities. Our model results provide critical insights into the evolution of oblique subduction and collisional systems, such as the Arabia-Eurasia convergence zone.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Physics of the Earth and Planetary Interiors
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 86 (1982), S. 676-677 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 86 (1982), S. 678-681 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 8083-8088 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have determined reduced absorption coefficients in far wings of the Yb (6s2)1S0–(6s6p)1P1 line broadened by He, Ne, Ar, Kr, Xe, and Yb. We find a prominent blue-satellite peak for all perturbers and undulations between the satellite peak and the line center for Ne, Ar, Kr, and Xe. Analyzing the satellite band with the aid of the unified Franck–Condon method, we obtain the position and the height of the extremum on the difference potential-energy curves concerned. We have also observed collision-induced-dipole absorption bands associated with the transition (6s2)1S0–(6s5d)3D2 of atomic Yb for Ne, Ar, Kr, and Xe perturbers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4499-4503 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have observed many collision-induced-dipole (CID) absorption bands arising from the transitions between quasimolecular ground and high-lying (n≤10) states in the strontium–rare-gas systems. For each absorption band, we have measured the energy shift of the absorption peak from the energy of the correlating atomic forbidden transition and the effective oscillator strength per unit perturber density fCID/Np. The shift is roughly proportional to the electron scattering length L0 for each rare-gas atom, whereas the fCID/Np is roughly proportional to L20. The shift decreases in general as the principal quantum number n increases, and increases as one goes from the s state to the d state, and to the degenerate manifold state with l≥3. These general features of the shift and fCID/Np are consistent with the predictions by a simple Fermi-potential model, suggesting the important role of the interaction between a Rydberg electron and a rare-gas atom in the CID absorption processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 9492-9493 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...