ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 26 (1994), S. 787-798 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 31 (1999), S. 245-252 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Tenascin-X has been studied in developing and adult rat eye and in foetal and adult human eyes, using immunohistochemistry and frozen sections. The data were compared with the distribution of tenascin-C. The immunoreactivity for tenascin-X was seen in a basement membrane-like feature in different structures of embryonic (E) day 16–17 rat eyes. Postnatal (P) day 2 and older rat eyes showed immunoreactivity for tenascin-X in different connective tissues. In the epithelial basement membrane zone of the cornea, immunostaining was positive in P5 eyes, negative in P10 and P15 eyes and again positive in P30 and adult eyes. In the 20-week-old human foetus, immunoreactivity for the tenascin was seen in the posterior parts of the conjunctival stroma adjacent to the sclera and in a basement membrane-like fashion in anterior conjunctiva. In the adult human eye, immunoreactivity for tenascin-X was seen in the anterior one-third stroma of cornea as thin fibrils, in the stroma of the limbus and conjunctiva, and in blood vessels. Immunostaining for tenascin-C was seen in the posterior aspect of the further cornea, and in mesenchyme adjacent to cornea in E16–17 rat eyes. Corneal keratocytes and Descemet's membrane showed immunoreactivity for tenascin-C in P2–P15 rat eyes. Sclera and the junction of the cornea, and sclera expressed tenascin-C in P2 and older rat eyes. In human foetal eyes, immunostaining for tenascin-C was seen in the anterior parts of the corneal stroma, in the basement membrane zone and Bowman's membrane of the corneal epithelium, in the posterior one-fifth of the corneal stroma and the sclera starting from the junction of the cornea and sclera. In normal human adult eyes, immunostaining for tenascin-X was seen in the anterior one-third stroma of cornea, in the stroma of limbus and conjunctiva, and in blood vessels. The association of tenascin-X and basement membranes in early development evokes a question of its potential function in the development of the basement membrane. The results also suggest the association of tenascin-X with connective tissue development as well as the association of tenascin-C with the migration of keratocytes during the development of the corneal stroma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 26 (1994), S. 787-798 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2) N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Helix aspersa agglutinin (HAA), Psophocarpus tetragonolobus agglutinin (PTA), Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4), Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) and Ricinus communis agglutinin (RCA-I)); (4) l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The distribution of a novel laminin alpha5-chain in the basement membranes of the anterior segment of rat eye was studied. Frozen sections of embryonic day (E)16--17, post-natal day (P)2, 5, 10, 15 and 30 and adult rat eyes were immunostained for laminin chains alpha2, alpha5, beta1, beta2 and gamma1 and for laminin-5, as well as for EHS-laminin, to visualize all basement membranes. Laminin alpha5-, beta1- and gamma1-chain immunoreactivities were found in the basement membranes of the inner and outer layers of optic cup, lens epithelium, further corneal epithelium and skin of the eyelids in E16--17 rat eyes. In P2 and older rat eyes, laminin alpha5-, beta1- and gamma1-chains were all seen in the basement membranes of the corneal and conjunctival epithelium, Descemet's membrane, lens epithelium, ciliary processes, blood vessels and skin of the eyelids. There was a change in the expression pattern of laminin alpha5, beta1- and gamma1-chains in Descemet's membrane from the endothelial side of the membrane (P2--P15 eyes) to both sides of the membrane after P30. Immunoreactivity for laminin-5 was weak in the basement membrane of E16--17 epidermis, but strong in the basement membrane of corneal, conjunctival and eyelid epithelium in P2 and older rat eyes. Laminin alpha2- and beta2-chains were seen in conjunctival and uveal blood vessels in P15 and older rat eyes. The laminin beta2-chain emerged into the basement membrane of conjunctival epithelium in P30 and older rat eyes, suggesting a role for the laminin beta2-chain in the maturation of conjunctiva. The results suggest that laminin alpha5-chain, possibly in laminin-10 (alpha5beta1gamma1), is early and widely expressed in the basement membranes of developing and adult rat eye and, further, that laminin alpha5-chain is a major laminin alpha-chain, partly in coexpression with the alpha3-chain of laminin-5 in the basement membranes of the anterior segment of the eye in developing and adult rats. © 1998 Chapman & Hall
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...