ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Purpose: We tested the hypothesis that loss of angiotensin converting enzyme 2 (ACE2) within diabetic HS/PCs (Hematopoietic Stem/Progenitor Cells) would be detrimental to HS/PC reparative function, and alter their ability to contribute to vascular remodeling in human subjects and rodent models of DR (Diabetic Retinopathy). Methods: Subjects (n52) were recruited as controls (n13) or diabetics (n39) with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ HS/PCs were isolated from peripheral blood. RAS (Renin-Angiotensin System) gene expression and migration was measured. Diabetic ACE2 knockout (KO)C57BL6-Ins2 (Akita) mice at 3, 6 and 9 months of diabetes were compared to age-matched controls. Bone marrow HS/PC populations were analyzed by flow cytometry and migration and proliferation studies performed. Results: ACE2 gene expression in human CD34+ cells from diabetics without DR was increased compared to controls (p0.0437). Mas receptor mRNA was also increased in diabetics without DR, but reduced with the onset of NPDR (p0.0002), suggesting a loss of compensation. DR was associated with CD34+ cell migratory dysfunction. By VESGEN analysis, vessel density measured by several confirming parameters in early NPDR (n3) was greater than in normal retina (n6) in both arteries and veins, which suggests active retinal remodeling. ACE2KO-Akita and Akita cohorts showed reduced retinal thickness by OCT (Optical Coherence Tomography) at 9 months of diabetes. Absence of ACE2 in 9-month Akita mice led to an accelerated increase in acellular capillaries compared to diabetic alone. Electroretinogram (ERG) in ACE2KO-Akita mice resulted in persistent deterioration of the neural retina. Reparative function studies showed that ACE2KO exacerbated diabetes-induced impairment of LK (Low Potassium) cell migration and proliferative functions as early as 3-month of diabetes (p0.0019). Conclusions: Retinopathy and adverse vascular remodeling in subjects with diabetes was associated with a loss of the protective arm of RAS in HS/PCs. Loss of ACE2 exacerbated vascular dysfunction in diabetic mice.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37881 , ARVO 2017 Annual Meeting; May 07, 2017 - May 11, 2017; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...