ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 67 (2002), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : :An isolated bacterium strain named CN2 found in Vietnamese fish sauce has been identified as Bacillus subtilis. In an enzyme-producing medium with 0% and 8% NaCl concentration, the CN2 strain produced the maximum collagenase activity, 3.07 U/ml and 2.60 U/ml. The strain also produced gelatinase, but the maximum activity was only 1.03 U/ml at 8 h of incubation time and prolonged more than 22 h. Bacillus subtilis CN2, grown slowly in a medium containing 12% NaCl, showed a decreased rate of collagenase activity with a maximum activity of 1.60 U/ml at 18 h of incubation time. The culture supernatant of CN2 strain digested a purified native collagen from rat tail tendon as well as αs-casein at Met123-Lys124 position. Therefore The culture supernatant of CN2 can be used to produce healthy foods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-01
    Print ISSN: 0006-3134
    Electronic ISSN: 1573-8264
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1984-01-01
    Print ISSN: 0248-4900
    Electronic ISSN: 1768-322X
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Long-term spaceflight leads to extensive changes in the musculoskeletal system attributable, in part, to unloading during microgravity exposure. Additionally, irradiation at doses similar to that of a solar flare or a round-trip sojourn to Mars may cause significant depletion of stem/progenitor cell pools throughout the body as well as inflammation associated with prompt skeletal-tissue degradation. Previously, we demonstrated that irradiation leads to rapid bone loss, which can be mitigated in the short term by injection of a potent antioxidant (-lipoic acid). Furthermore, simulated weightlessness in adult mice adversely affects skeletal responses to low linear energy transfer (LET) radiation (137Cs). Here, we hypothesized that simulated weightlessness exacerbates the adverse effects of simulated space radiation (including both protons and 56Fe ions) by adversely affecting skeletal structure and functions as well as associated vasculature. Furthermore, we hypothesized that an antioxidant cocktail, which has been shown to be protective in other tissues, mitigates space radiation induced bone loss.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN12029 , NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Glaveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy-ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week-old C57BL6/J mice were exposed to high-LET (56-Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3-4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 m pixel size) and marrow cell redox assessed using membrane permeable, free radical-sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT-PCR. Interestingly, 3-4 days post-exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF-FM Diacetate or CM-H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham-irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower (24%) relative to sham-irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up-regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down-regulate iNOS by 0.54-0.58 fold. Thus, both low- and high-doses of heavy-ion irradiation cause time-dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow-derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN12035 , NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 12, 2014 - Feb 13, 2014; Glaveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...