ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, OxfordOX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 27 (2004), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, the average stress method for the fatigue limit evaluation of stress raising geometrical features is revised and extended. In particular, an analytical close-form approach was used and the linear elastic stress equations were modified by taking into account the effect of nominal stress on the local stress distribution. Hence, the average tangential stress was correctly evaluated over a distance of 2a0, where a0 was El Haddad's short crack constant, for long and small notches as well as for crack-like notches. When this model is applied to a wide range of geometrical features subjected to mode I fatigue loading, the classical shape of the curves of the Kitagawa–Takahashi diagram was obtained for changes in crack-like notch size. Similarly, notch sensitivity was estimated by reducing the notch tip radius. The accuracy of the proposed method in predicting fatigue limits was then checked by using experimental data taken from the literature and generated on testing specimens weakened by rounded and sharp notches as well as by small artificial defects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 21 (1998), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In the context of linear elastic stress gradients that are present in welded joints, a stress field approach based on notch stress intensity factors is presented with the aim of describing stress distributions in the neighbourhood of weld toes, since fatigue strength is dependent on such distributions. This paper summarizes the analytical fundamentals and gives an appropriate definition of the parameters for stress components under opening and sliding modes. Then, by comparing the expected results with those obtained by numerical analysis, the contributions of the symmetric and skew-symmetric loading modes are quantified for different geometries, and summarized into concise expressions which also take into account the influence of the main geometrical parameters of the welded joint. The range of validity and the application limits of this field approach in the presence of weld toe radii are discussed. Finally, a synthesis of experimental fatigue strength data based on the new field parameters is reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, OxfordOX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 27 (2004), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper, the modified Wöhler curve method proposed by Susmel and Lazzarin is employed to predict the fatigue life of welded connections subjected to biaxial cyclic loading. This criterion is reformulated here in order not to take into account the mean stress effect, as suggested by several design codes (at least when welded connections are not completely stress relieved). The accuracy of the proposed method in fatigue lifetime estimation was evaluated by using a number of data sets taken from the literature. The modified Wöhler curve method was applied in terms of nominal stresses and was calibrated using the uniaxial and torsional fatigue curve determined by reanalysing the experimental data, as well as using the standard fatigue curves of the Eurocode 3. The proposed approach was seen to be successful, giving multiaxial fatigue life predictions located within the widest scatter band related either to uniaxial or to torsional data, independently of both out-of-phase angle and load ratio value. Finally, the accuracy of the modified Wöhler curve method was compared to the one obtained by applying the procedure suggested by the Eurocode 3: the proposed criterion is demonstrated to be much more accurate and reliable than the standard one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 22 (1999), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper investigates the possibility of unifying different criteria concerned with the fatigue strength of welded joints. In particular, it compares estimates based on local stress fields due to geometry (evaluated without any crack-like defect) and residual life predictions in the presence of a crack, according to LEFM. Fatigue strength results already reported in the literature for transverse non-load-carrying fillet welds are used as an experimental database. Nominal stress ranges were largely scattered, due to large variations of joint geometrical parameters. The scatter band greatly reduces as soon as a 0.3-mm virtual crack is introduced at the weld toe, and the behaviour of the joints is given in terms of ΔKI versus total life fatigue. Such calculations, not different from residual life predictions, are easily performed by using the local stress distributions determined near the weld toes in the absence of crack-like defects. More precisely, the analytical expressions for KI are based on a simple combination of the notch stress intensity factors K1N and K2N for opening and sliding modes. Then, fatigue strength predictions, as accurate as those based on fracture mechanics, are performed by the local stress analysis in a simpler way.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 20 (1997), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— An analytical solution has been proposed recently by the authors to describe, with a unified approach, the stress fields in the neighbourhood of sharp cracks, V-shaped notches and re-entrant corners in plates subjected to remote tensile loading. In the present paper, the above solution is revised and extended, by also determining the relevant displacement fields and the degree of accuracy of the solution for both the longitudinal and transverse stress fields. Afterwards, since the stress field depends on the type of loading, the circumferential principal stress component is modified to account for bending in fatigue life predictions, while the radial principal stress is almost negligible in this case. The analytical results are compared with finite element values obtained for different geometries loaded under tensile or bending conditions, as well as with other closed-form solutions. The new expressions seem to give better stress estimates than the currently available approximate solutions, whether analytical or numerical, when the opening angle of the re-entrant corner is equal to or greater than π/2. Hence they should represent a good starting point to describe stress distributions induced by stress raisers with large and well defined opening angles such as shafts with shoulder fillets, gears and weldments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 78 (1996), S. 3-19 
    ISSN: 1573-2673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The problem of evaluating linear elastic stress fields in the neighborhood of cracks and notches is considered. An analytical solution valid for cracked and notched components is given in general terms, according to Muskhelishvili's method based on complex stress functions. The solution is particularly useful for V-shape notches in wide and finite plates under uniform tensile loading. It will be demonstrated that some remarkable solutions of fracture mechanics and notch analysis already reported in the literature can be considered special cases of this general solution, as soon as appropriate values of the free parameters are adopted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 91 (1998), S. 269-282 
    ISSN: 1573-2673
    Keywords: Stress fields ; stress concentration factors ; V-shaped notches ; U-shaped notches
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In fatigue crack growth analysis it is essential to know the stress distributions in the neighbourhood of stress raisers. If such distributions ahead of the uncracked notch are known, stress intensity factors may be obtained via the weight function or other methods. The procedure described in the present paper reconsiders the principal elastic stress expressions already reported by the authors for infinite plates with semi-infinite symmetric V-shaped notches and adapts them to some practical cases, in which the mutual influence of the notches as well as that of the plate finite size play an important role in stress distributions. The aim is therefore to give an approximate close-form solution for the longitudinal stress, valid for the entire ligament length, namely from notch tip to notch tip. Theoretical and numerical stress values are compared on this line, examining plates with semicircular, V and U-shaped notches subjected to remote uniaxial tension.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1996-01-01
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-10-25
    Print ISSN: 0376-9429
    Electronic ISSN: 1573-2673
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...