ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-17
    Description: Polylactide (PLA), poly(butylene succinate) (PBS) and blends thereof have been researched in the last two decades due to their commercial availability and the upcoming requirements for using bio-based chemical building blocks. Blends consisting of PLA and PBS offer specific material properties. However, their thermodynamically favored biphasic composition often restricts their applications. Many approaches have been taken to achieve better compatibility for tailored and improved material properties. This review focuses on the modification of PLA/PBS blends in the timeframe from 2007 to early 2019. Firstly, neat polymers of PLA and PBS are introduced in respect of their origin, their chemical structure, thermal and mechanical properties. Secondly, recent studies for improving blend properties are reviewed mainly under the focus of the toughness modification using methods including simple blending, plasticization, reactive compatibilization, and copolymerization. Thirdly, we follow up by reviewing the effect of PBS addition, stereocomplexation, nucleation, and processing parameters on the crystallization of PLA. Next, the biodegradation and disintegration of PLA/PBS blends are summarized regarding the European and International Standards, influencing factors, and degradation mechanisms. Furthermore, the recycling and application potential of the blends are outlined.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-22
    Description: Biodegradable plastics are experiencing increasing demand, in particular because of said property. This also applies to the two biopolyesters poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) covered in this study. Both are proven to be biodegradable under industrial composting conditions. This study presents the influence of mineral fillers on the disintegration process of PLA/PBS blend systems under such conditions. Chalk and talc were used as fillers in PLA/PBS (7:3) blend systems. In addition, unfilled PLA/PBS (7:3/3:7) blend systems were considered. Microscopic images, differential scanning calorimetry and tensile test measurements were used in addition to measuring mass loss of the specimen to characterize the progress of disintegration. The mineral fillers used influence the disintegration behavior of PLA/PBS blends under industrial composting conditions. In general, talc leads to lower and chalk to higher disintegration rates. This effect is in line with the measured decrease in mechanical properties and melting enthalpies. The degrees of disintegration almost linearly correlate with specimen thickness, while different surface textures showed no clear effects. Thus, we conclude that disintegration in a PLA/PBS system proceeds as a bulk erosion process. Using fillers to control the degradation process is generally regarded as possible.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...