ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 141 (2017): 155-167, doi:10.1016/j.dsr2.2016.07.015.
    Description: Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (B. physalus) and sei (B. borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger’s distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.
    Description: This work was supported by FEDER funds, through the Competitiveness Factors Operational Programme - COMPETE, by national funds, through FCT - Foundation for Science and Technology, under project TRACE (PTDC/ MAR/74071/2006), and by regional funds, through DRCT/SRCTE, under project MAPCET (M2.1.2/ F/012/2011). We acknowledge funds provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. RP was supported by an FCT postdoctoral grant (SFRH_BPD_108007_2015); MT’s fellowship was supported by the FCT Exploratory project (IF/00943/2013); MAS has an FCT Investigador contract (IF/00943/2013).
    Description: 2018-08-02
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Perez-Jorge, S., Tobena, M., Prieto, R., Vandeperre, F., Calmettes, B., Lehodey, P., & Silva, M. A. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Diversity and Distributions, 00, (2020): 1-16, doi:10.1111/ddi.13038.
    Description: Aim Understanding the environmental drivers of movement and habitat use of highly migratory marine species is crucial to implement appropriate management and conservation measures. However, this requires quantitative information on their spatial and temporal presence, which is limited in the high seas. Here, we aimed to gain insights of the essential habitats of three baleen whale species around the mid‐North Atlantic (NA) region, linking their large‐scale movements with information on oceanographic and biological processes. Location Mid‐NA Ocean. Methods We present the first study combining data from 31 satellite tracks of baleen whales (15, 10 and 6 from fin, blue and sei whales, respectively) from March to July (2008–2016) with data on remotely sensed oceanography and mid‐ and lower trophic level biomass derived from the spatial ecosystem and population dynamics model (SEAPODYM). A Bayesian switching state‐space model was applied to obtain regular tracks and correct for location errors, and pseudo‐absences were created through simulated positions using a correlated random walk model. Based on the tracks and pseudo‐absences, we applied generalized additive mixed models (GAMMs) to determine the probability of occurrence and predict monthly distributions. Results This study provides the most detailed research on the spatio‐temporal distribution of baleen whales in the mid‐NA, showing how dynamic biophysical processes determine their habitat preference. Movement patterns were mainly influenced by the interaction of temperature and the lower trophic level biomass; however, this relationship differed substantially among species. Best‐fit models suggest that movements of whales migrating towards more productive areas in northern latitudes were constrained by depth and eddy kinetic energy. Main conclusions These novel insights highlight the importance of integrating telemetry data with spatially explicit prey models to understand which factors shape the movement patterns of highly migratory species across large geographical scales. In addition, our outcomes could contribute to inform management of anthropogenic threats to baleen whales in sparsely surveyed region.
    Description: We are very grateful to Cláudia Oliveira, Irma Cascão, Maria João Cruz, Miriam Romagosa and many volunteers, skilled skippers, crew and spotters that participated in the tagging fieldwork. This work was supported by Fundação para a Ciência e Tecnologia (FCT), Azores 2020 Operational Programme and Fundo Regional da Ciência e Tecnologia (FRCT) through research projects FCT‐Exploratory project (IF/00943/2013/CP1199/CT0001), TRACE (PTDC/MAR/74071/2006) and MAPCET (M2.1.2/F/012/2011) co‐funded by FEDER, COMPETE, QREN, POPH, ESF, ERDF, Portuguese Ministry for Science and Education, and Proconvergencia Açores/EU Program. We also acknowledge funds provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. SPJ was supported by a postdoctoral grant (REF.GREENUP/001‐2016), MT by a DRCT doctoral grant (M3.1.a/F/028/2015), MAS by an FCT‐Investigator contract (IF/00943/2013), FV by an FCT Investigator contract (CEECIND/03469/2017) and RP by an FCT postdoctoral grant (SFRH/BPD/108007/2015). LMTL modelling work has been supported by the CMEMS Service Evolution GREENUP project, funded by Mercator Ocean. We are grateful to Elliott Hazen for offering guidance and advice, and to two anonymous referees whose comments greatly improved this work.
    Keywords: baleen whales ; movements ; North Atlantic ; Prey ; SEAPODYM ; species distribution models ; tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 2 (2016): 202, doi:10.3389/fmars.2016.00202.
    Description: Marine spatial planning and ecological research call for high-resolution species distribution data. However, those data are still not available for most marine large vertebrates. The dynamic nature of oceanographic processes and the wide-ranging behavior of many marine vertebrates create further difficulties, as distribution data must incorporate both the spatial and temporal dimensions. Cetaceans play an essential role in structuring and maintaining marine ecosystems and face increasing threats from human activities. The Azores holds a high diversity of cetaceans but the information about spatial and temporal patterns of distribution for this marine megafauna group in the region is still very limited. To tackle this issue, we created monthly predictive cetacean distribution maps for spring and summer months, using data collected by the Azores Fisheries Observer Programme between 2004 and 2009. We then combined the individual predictive maps to obtain species richness maps for the same period. Our results reflect a great heterogeneity in distribution among species and within species among different months. This heterogeneity reflects a contrasting influence of oceanographic processes on the distribution of cetacean species. However, some persistent areas of increased species richness could also be identified from our results. We argue that policies aimed at effectively protecting cetaceans and their habitats must include the principle of dynamic ocean management coupled with other area-based management such as marine spatial planning.
    Description: This work was supported by FEDER funds, through the Competitiveness Factors Operational Programme - COMPETE, by national funds, through FCT - Foundation for Science and Technology, under project TRACE (PTDC/ MAR/74071/2006), and by regional funds, through DRCT/SRCTE, under projects MAPCET (M2.1.2/F/012/2011) and 2020 (M2.1.2/I/026/2011). We acknowledge funds provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. RP is supported by an FCT postdoctoral grant (SFRH/BPD/108007/2015); MAS is supported by Program Investigator FCT (IF/00943/2013) and MT was supported by a research fellowship under the Exploratory project (IF/00943/2013/CP1199/CT0001) that also paid the fees for this open-access publication. IF/00943/2013 and IF/00943/2013/CP1199/CT0001 are funded by FSE and MCTES, through POPH and QREN.
    Keywords: Cetacean ; Spatio-temporal distribution ; Azores ; Species distribution models (SDMs) ; Richness ; MaxEnt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...