ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-09-23
    Description: The behavior of niobium and tantalum is poorly understood in rocks that have undergone significant hydrothermal alteration, and niobium-tantalum minerals of hydrothermal origin are rarely mentioned in the literature. Consequently, the mobility of these critical metals, although widely considered to be negligible, has not been evaluated. In this paper, we present the results of a study of the genesis of niobium and tantalum mineralization in the Nechalacho rare metal deposit, Northwest Territories, Canada, which contains one of the largest known resources of these metals in rocks that have undergone intense hydrothermal alteration. Analyses and examination of samples using the electron microprobe has led to the identification of a variety of niobium- and tantalum-bearing minerals in the Nechalacho deposit. Niobium-bearing zircon, columbite-(Fe), fergusonite-(Y), and samarskite-(Y) were identified in the ore zones of the deposit, uranopyrochlore, and columbite-(Fe) were found outside the ore zones, and magmatic fluornatropyrochlore was shown to be the sole niobium-tantalum mineral in relatively unaltered syenites below the Basal ore zone. Based on the paragenetic relationships among the above minerals, variations in the composition of the columbite group minerals as a function of location in the Nechalacho Layered Suite and the distribution of niobium, tantalum, zirconium, and uranium in the bulk rocks, we have developed a model to explain the occurrence of niobium and tantalum in the Nechalacho deposit. The first step in the concentration of these elements was the crystallization of niobium- and tantalum-bearing zircon and eudialyte in the subhorizontal Upper and Basal ore zones, respectively. This was accompanied by the crystallization of magmatic columbite-(Fe) in the Upper ore zone. Fergusonite-(Y) crystallized in the Basal ore zone and also formed due to the breakdown of eudialyte. Outside the ore zones, there was crystallization of pyrochlore and to a lesser extent magmatic columbite-(Fe). This step led to the development of strong spatial associations among niobium, zirconium, and uranium that are evident as strong positive correlations in the bulk-rock concentrations of these elements at the meter scale. During the ensuing intense and widespread hydrothermal alteration, niobium was locally remobilized. Hydrothermal columbite-(Fe) and fergusonite-(Y) formed at the cores of altered zircon grains. Wholesale replacement of magmatic columbite-(Fe) and fergusonite-(Y) by hydrothermal anhedral crystals occurred in the two ore zones. The estimated relative proportions of the sources of these minerals in the ore zones, although varying to some extent because of a dependence on the amount of niobium mobilized from zircon, is ~40/60. Outside the ore zones, columbite-(Fe) and uranopyrochlore are the present manifestations of the former pyrochlore. With the exception of magmatic fluornatropyrochlore in the fresher syenites below the Basal ore zone and a single example of magmatic columbite-(Fe) in an Upper ore zone sample, all niobium and tantalum minerals have a hydrothermal origin as a result of this pervasive alteration.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-26
    Description: Despite the numerous industrial and scientific applications of gallium, its behavior in nature and the processes that concentrate it to potentially economic levels are poorly understood. Although the main supply of this metal is as a by-product of the mining of bauxite, it is also concentrated by magmatic-hydrothermal processes in peralkaline igneous systems. Here we report the results of a study of the distribution of gallium and the controls on this distribution in the Nechalacho rare metal deposit, Northwest Territories, Canada, which has been shown to contain significant reserves of this critical metal. Electron microprobe analyses and X-ray element maps of gallium-bearing minerals were used to determine the mineralogical distribution of gallium in the Nechalacho intrusive suite. Elevated gallium concentrations were identified in albite, biotite, orthoclase, chlorite, and allanite. Of these aluminum-bearing minerals, the most important hosts of gallium are albite, biotite, and orthoclase. Ferric iron-bearing minerals, including magnetite and aegirine, which were considered potential candidates for gallium sequestration, contain relatively low concentrations of the metal. This behavior of gallium, at least from a magmatic perspective, is consistent with its predicted partitioning between phenocrysts and melt. However, there is also evidence that gallium was redistributed by hydrothermal fluids. Chloritization of biotite resulted in the enrichment of gallium in the secondary mineral (chlorite), and the development of secondary albite (albitization) led to a depletion of gallium in primary albite. On the basis of these results, we argue that the overall distribution of gallium within the Nechalacho deposit was controlled by magmatic crystal fractionation, whereas hydrothermal processes led to local remobilization of the metal. During fractional crystallization, gallium was moderately compatible in minerals such as albite and biotite, whereas it bordered between compatibility and incompatibility in minerals such as magnetite and orthoclase, and was incompatible in aegirine. This resulted in a relatively constant bulk gallium concentration in the Nechalacho deposit, although locally, gallium was remobilized hydrothermally, particularly within the most altered parts of the intrusion, notably, the albitite.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...